Search Algorithms for Discrete
Optimization Problems

!'_ (Chapter 11)

Alexandre David
B2-206

Today

= Discrete optimization — basics.
= Sequential search algorithms.
= Parallel depth-first search.

= Parallel best-first search.

= Speedup anomalies.

Discrete Optimization Problems

i(DOP)

= Tuple (5,/) where

= S is a finite (or countable) set of feasible
solutions.

= The function f is the cost F: S >R

= Objective: Find a solution x,,€S s.t.
f(Xopt) < f(x) for all xeS.

= Applications: Planning, scheduling, layout
of VLSI chips, etc ...

The 0/1 Integer-Linear-
Programming Problem

= Input: an m *m matrix 4, an m * 1 vector
b, and an n * 1 vector c.

= Find vector x of 0/1 s.t.

= The constraint AZ > b is satisfied.

= The function f(Z) = ¢'Z is minimized.

‘LThe 8-Puzzle Problem

S = All paths from initial
to final configurations.
Function /=number of moves.

] 1 1[s[2] . [1]
u u (] OWIn
18] 3] 2=l 8] 3| B[] 8] 3] —>| 4| 8] 3] =
41 71| 6 4 5 [] 6 7 L1 6
left
1[2]3] [1]2]3 @lo] |
4] 506|<2 4] 5/O/<"2 | 4] 5]3]="
71 8| 71 8] 6 7 s

I ast tile moved] Blank tile

o | W

down

wlwm|]=—|e|L]|lwn

N | 2

iDOP

= The feasible space S is typically very large.

= Reformulate a DOP as the problem of
finding the minimum cost-path from an
initial node to goal node(s).

= S contains paths.

= The graph is called the state-space, the
nodes are called states.

= Often, f=sum of the edge costs.

0/1 Integer-Linear-
iProgramming Problem Revisited

= - - 2
52 1 2 8 1
A=1 -1 -1 2| b= 2 C=1|_4
31 1 3 5)

DX+ 2X, + X3+ 2X,28
> [X; - Xy - X3+ 2X422 Constraints
3X; + X, +X3 +3X, 2 D

—_— f(X) - le + XZ - X3 - ZX4 COST

x1:0

O Terminal node (non-goal)

Figure 11.2

o O Non-terminal node
x=1 0O Terminal node (goal)
@ x, fixed, x, x5 x, free.
(] ()
x3 =0 x3 =1 x3=20 X3 =
%4 () (] (X
x4 =0 x4:1x4:0 x4 =1
@ O O O
S(x) =0 S(0) =2

The graph corresponding to the 0/1 integer-linear-programming problem.

Heuristics

= Often possible to estimate the cost to
reach goal states from an intermediate
state.

= Heuristic estimate.

» If the heuristic is guaranteed to be a lower
bound on the costthen it is an admissible
heuristic.

=« Good for pruning the search.
= 8-puzzle problem: Manhattan distance.

02-05-2006 Alexandre David, MVP'06

Sequential Search Algorithms

s | rees: Each successor leads to an
unexplored state.

= (General) Graphs: States reachable by
several paths — check explored states.

= Depth-first search (trees) — storage linear
in function of the depth.

= Depth-first branch-and-bound.

s Iterative deepenina DES _A*
Avoid being stuck in a branch.

10

Top of the stack /

c
5 B
O
s& ._n_lw = &
@) Q
A= Ol = | = | = %
k._\ a..we
e J29 8L =] 2| 2| 2| =
2 mmtc
m N o o
g
M

5
4
9
3
11

AN

DFS

Current State

(c)

(b)

(a)

iBest First Search

n 2 lists:
= States to be explored on the open list. | waiting
= States explored on the closed list. passed
= Choose best from open list, replace if find

better states — more memory.
= A* algorithm:
= [(X)=g(x)+h(Xx) used to order the search.
= g(x): from init to x.
= h(x): from x to goal.

iSequentiaI vs. Parallel Search

= Overhead for parallel search (as usual
communication, contention, load
imbalance).

= Big difference with other algorithms:
Amount of work can be very different
because different parts of the search space
are explored.
= Super-linear anomalies.
= Critical issue: Distribution of the search space.

13

Parallel DFS

= Static partitioning: Assign a processor per
branch from the root: Load imbalance.

= Dynamic partitioning: Idle processors
request work from busy ones.

= Assume the search is done on disjoint parts of
the search space — otherwise duplicate work.

= Local stack of states to explore.
= Recipient/donor; see worker model.

14

Generic Scheme for Load

iBaIa ncing
MESSages

Do unit of
work
done work to do
Select a process
messages
reject

02-05-2006 Alexandre David, MVP'06

15

Work Splitting

= Work-splitting strategies:
= Send nodes near bottom of the stack (root).
= Send nodes near end.
= Send some nodes from each level (stack
splitting).
= Half-split: V2 of the stack split — difficult to
estimate the size of the sub-trees.

= Do not send nodes beyond the cutoff
depth. Why?

16

iLoad Balancing

= Which processor to ask?

= Asynchronous Round Robin.

= Ask to (local_target++)%op.

= + asynchronous, - even work.

= Global Round Robin.
= Ask to (global_target++)%op.
= - contention, + even work.

= Random Polling.
s + 4+ 7?

17

iAnaIysis

= How to analyze?
= What's W? W,,?
= Problem:

= The execution time depends on the search
primarily (and secondarily on the size of the
input).

18

Analysis

s Compute overhead T, (as usual) from
communication, idling, contention, and
termination detection.

= In addition the search overhead may add
another term (Wy/W). Assume = 1.

= Distinguish executed search and algorithm.

= Problem: Dynamic communication
schemes, difficult to derive an exact
expression.

19

Analysis

= Get an upper-bound, i.e., worst case.

= Assume
= Work can be partitioned as long as > e.

= A reasonable work-splitting is available.
a-splitting: Both partitions of a work w have at
least a.w work.

= Quantify the number of (work) requests.

20

Analysis

= Donor has w; — w; + w,.

= Assumption: w; > aw;, W, > aw,.

= After transfer, donor and recipient have
< (1-o)w..

= W,...,W,; < W. Split all (2p pieces), largest
< (1-a)w.

= If every processor gets a request once,
then each piece has been split once =

maximum load reduced by (1-a) at any
Processor.

21

Analysis

s Load balancing in the term V(p): After
every V(p) requests, each processor
receives at least one request.

= After every V(p) requests, the maximum
work decreases by at least (1-a).

= i*V(p) requests — remaining work < (1-a.)'W.

= T0 have remaining work < g, the number of
requests is O (V(p)log).
n = To=t,mV(p)logW.

22

Computation of V(p)

= Asynchronous round robin: Worst case
when p-1 processors request the same
processor, but they all get it wrong.

= 0asksto 1, 2, 3... and finally p-1.
= Same for all p-1 processes = V(p)=0 (p°).

= Global round robin: One sequence for all
processor. V(p)=p.

= Random: Compute average in O (plogp).

23

Analysis (cont.)

» We want the isoefficiency function W=KT,.
= We have T,=0 (V(p)logW/).

= We have V(p) for different load balancing
schemes.

= = Ssolve W =f(p).

= Take contention into account for global
round robin — O (p?logp), and for random

O (p log*p).

24

Analysis

= Asynchronous round robin: Poor
performance because of its large number
of work requests.

= Global round robin: Poor performance
because of contention at counter, even
with its least number of requests.

= Random polling: Desirable compromise.

25

Termination Detection

= Normally simple token based algorithm
works but not here. When a processor
goes idle, it may receive more work later.

= Dijkstra’s token algorithm.
= [ree-based algorithm.

26

Dijsktra’s Token Termination
iDetection Algorithm

P, idle initiates algorithm. P, idle has token: pass it.

[] [] — []
It sends a white token. P, receives the white

token and is idle: stop.
P; (not idle) sends work to P;, j>i: P; becomes black.

<0) (1 {(2) = ~
Y L \2/ >
- L
When P; becomes idle it passes
P, receives a black token: a black token and becomes white

retry. again.

27

Tree-Based Termination
iDetection

= Weight 1 from the root at the start.

= Weights are divided and go down the tree
with the work.

= When work is done, weights are returned
from the source.

= Terminate when weight is one at the root.
= Careful with precision.

28

Step | Step 2 Step 3

wo = 0.25 wo = 0.5 O wo = 1.0

w) = 0.5 w3 = 0.25 w) = 0.5

Step 4 Step 5 Step 6

Figure 11.10 Tree-based termination detection. Steps 1-6 illustrate the weights at various pro-
cessors after each work transfer.

29

iExperiments

Analysis validated by
experimental results.
It works. ©

30

iParaIIeI Best-First Search

= Avoid bottleneck with one global open list.

= Local open lists must synchronize and
share their best nodes.
= Different communication schemes.

= Distributed cycle detection: Hash nodes to

map them on specific processors (local
check) but degrades performance.

31

‘LAcceIeration Anomalies

Start node S Start node S
R]O
‘//// \EIFZ:) é//// \;>N§:)
/ DN / Ny
R4 () L2

e e
172 N NS NN

4 O

/ \ Goal node G / \ Goal node G
Total number of nodes generated by Total number of nodes generated by
sequential formulation = 13 two-processor formulation of DFS =9

(a) (b)

{Deceleration Anomalies

Start node S Start node S
10) RI()
N\ N
O O RO LQ
30) >Q R3 (O R4 (O L2 ()

/6 O\ O / - R/6 O\ : ; :
70 O O R7(O L5 O
Goal node G Goal node G
Total number of nodes generated by Total number of nodes generated by
sequential DFS =7 two-processor formulation of DFS = 12

(a) (b) 33

