
Search Algorithms for Discrete
Optimization Problems
(Chapter 11)

Alexandre David
B2-206

02-05-2006 Alexandre David, MVP'06 2

Today
� Discrete optimization – basics.
� Sequential search algorithms.
� Parallel depth-first search.
� Parallel best-first search.
� Speedup anomalies.

02-05-2006 Alexandre David, MVP'06 3

Discrete Optimization Problems
(DOP)
� Tuple (S,f) where

� S is a finite (or countable) set of feasible
solutions.

� The function f is the cost f : S →R.

� Objective: Find a solution xopt∈S s.t.
f(xopt) ≤ f(x) for all x∈S.

� Applications: Planning, scheduling, layout
of VLSI chips, etc …

02-05-2006 Alexandre David, MVP'06 4

The 0/1 Integer-Linear-
Programming Problem
� Input: an m *m matrix A, an m *1 vector

b, and an n *1 vector c.
� Find vector x of 0/1 s.t.

� The constraint is satisfied.
� The function is minimized.

02-05-2006 Alexandre David, MVP'06 5

The 8-Puzzle Problem

S = All paths from initial
to final configurations.

Function f =number of moves.

02-05-2006 Alexandre David, MVP'06 6

DOP
� The feasible space S is typically very large.
� Reformulate a DOP as the problem of

finding the minimum cost-path from an
initial node to goal node(s).

� S contains paths.
� The graph is called the state-space, the

nodes are called states.
� Often, f=sum of the edge costs.

02-05-2006 Alexandre David, MVP'06 7

0/1 Integer-Linear-
Programming Problem Revisited

5 2 1 2
A= 1 -1 -1 2

3 1 1 3

8
b= 2

5
c=

2
1
-1
-2

5x1 + 2x2 + x3 + 2x4 ≥ 8
x1 - x2 - x3 + 2x4 ≥ 2
3x1 + x2 +x3 +3x4 ≥ 5

Constraints

f(x) = 2x1 + x2 – x3 - 2x4 Cost

02-05-2006 Alexandre David, MVP'06 8

x1 fixed, x2 x3 x4 free.

We don’t need to
search the whole
graph.

02-05-2006 Alexandre David, MVP'06 9

Heuristics
� Often possible to estimate the cost to

reach goal states from an intermediate
state.
� Heuristic estimate.
� If the heuristic is guaranteed to be a lower

bound on the cost then it is an admissible
heuristic.

� Good for pruning the search.

� 8-puzzle problem: Manhattan distance.

02-05-2006 Alexandre David, MVP'06 10

Sequential Search Algorithms
� Trees: Each successor leads to an

unexplored state.
� (General) Graphs: States reachable by

several paths → check explored states.
� Depth-first search (trees) – storage linear

in function of the depth.
� Depth-first branch-and-bound.
� Iterative deepening DFS, A*.

Avoid being stuck in a branch.

02-05-2006 Alexandre David, MVP'06 11

Store ancestor
state:
• trace
• cycle detection.

DFS

02-05-2006 Alexandre David, MVP'06 12

Best First Search
� 2 lists:

� States to be explored on the open list.
� States explored on the closed list.
� Choose best from open list, replace if find

better states – more memory.

� A* algorithm:
� l(x)=g(x)+h(x) used to order the search.
� g(x): from init to x.
� h(x): from x to goal.

passed

waiting

02-05-2006 Alexandre David, MVP'06 13

Sequential vs. Parallel Search
� Overhead for parallel search (as usual

communication, contention, load
imbalance).

� Big difference with other algorithms:
Amount of work can be very different
because different parts of the search space
are explored.
� Super-linear anomalies.
� Critical issue: Distribution of the search space.

02-05-2006 Alexandre David, MVP'06 14

Parallel DFS
� Static partitioning: Assign a processor per

branch from the root: Load imbalance.
� Dynamic partitioning: Idle processors

request work from busy ones.
� Assume the search is done on disjoint parts of

the search space – otherwise duplicate work.
� Local stack of states to explore.
� Recipient/donor; see worker model.

02-05-2006 Alexandre David, MVP'06 15

Generic Scheme for Load
Balancing

Respond
messages

Do unit of
work

Select a processor Request
messages

reject

try

done work to do

02-05-2006 Alexandre David, MVP'06 16

Work Splitting
� Work-splitting strategies:

� Send nodes near bottom of the stack (root).
� Send nodes near end.
� Send some nodes from each level (stack

splitting).

� Half-split: ½ of the stack split – difficult to
estimate the size of the sub-trees.

� Do not send nodes beyond the cutoff
depth. Why?

02-05-2006 Alexandre David, MVP'06 17

Load Balancing
� Which processor to ask?

� Asynchronous Round Robin.
� Ask to (local_target++)%p.
� + asynchronous, - even work.

� Global Round Robin.
� Ask to (global_target++)%p.
� - contention, + even work.

� Random Polling.
� + + ?

02-05-2006 Alexandre David, MVP'06 18

Analysis
� How to analyze?
� What’s W? WP?
� Problem:

� The execution time depends on the search
primarily (and secondarily on the size of the
input).

02-05-2006 Alexandre David, MVP'06 19

Analysis
� Compute overhead T0 (as usual) from

communication, idling, contention, and
termination detection.

� In addition the search overhead may add
another term (WP/W). Assume = 1.

� Distinguish executed search and algorithm.
� Problem: Dynamic communication

schemes, difficult to derive an exact
expression.

02-05-2006 Alexandre David, MVP'06 20

Analysis
� Get an upper-bound, i.e., worst case.
� Assume

� Work can be partitioned as long as > ε.
� A reasonable work-splitting is available.
α-splitting: Both partitions of a work w have at
least αw work.

� Quantify the number of (work) requests.

02-05-2006 Alexandre David, MVP'06 21

Analysis
� Donor has wi → wj + wk.
� Assumption: wj > αwi, wk > αwi.
� After transfer, donor and recipient have
≤ (1-α)wi.

� w0,…,wp-1 ≤ w. Split all (2p pieces), largest
≤ (1-α)w.

� If every processor gets a request once,
then each piece has been split once ⇒
maximum load reduced by (1-α) at any
processor.

02-05-2006 Alexandre David, MVP'06 22

Analysis
� Load balancing in the term V(p): After

every V(p) requests, each processor
receives at least one request.

� After every V(p) requests, the maximum
work decreases by at least (1-α).
� i*V(p) requests → remaining work ≤ (1-α)iW.
� To have remaining work ≤ ε, the number of

requests is O (V(p)logW).
� ⇒ T0=tcommV(p)logW.

02-05-2006 Alexandre David, MVP'06 23

Computation of V(p)
� Asynchronous round robin: Worst case

when p-1 processors request the same
processor, but they all get it wrong.
� 0 asks to 1, 2, 3… and finally p-1.
� Same for all p-1 processes ⇒ V(p)=O (p2).

� Global round robin: One sequence for all
processor. V(p)=p.

� Random: Compute average in O (p logp).

02-05-2006 Alexandre David, MVP'06 24

Analysis (cont.)
� We want the isoefficiency function W=KT0.

� We have T0=O (V(p)logW).
� We have V(p) for different load balancing

schemes.
� ⇒ solve W =f(p).

� Take contention into account for global
round robin → O (p2 logp), and for random
O (p log2p).

02-05-2006 Alexandre David, MVP'06 25

Analysis
� Asynchronous round robin: Poor

performance because of its large number
of work requests.

� Global round robin: Poor performance
because of contention at counter, even
with its least number of requests.

� Random polling: Desirable compromise.

02-05-2006 Alexandre David, MVP'06 26

Termination Detection
� Normally simple token based algorithm

works but not here. When a processor
goes idle, it may receive more work later.

� Dijkstra’s token algorithm.
� Tree-based algorithm.

02-05-2006 Alexandre David, MVP'06 27

Dijsktra’s Token Termination
Detection Algorithm

0

P0 idle initiates algorithm.

1

It sends a white token.

2

Pi idle has token: pass it.

…

P0 receives the white
token and is idle: stop.

0 1 2 3

Pj (not idle) sends work to Pi, j>i: Pj becomes black.

3

When Pj becomes idle it passes
a black token and becomes white
again.

…

P0 receives a black token:
retry.

02-05-2006 Alexandre David, MVP'06 28

Tree-Based Termination
Detection
� Weight 1 from the root at the start.
� Weights are divided and go down the tree

with the work.
� When work is done, weights are returned

from the source.
� Terminate when weight is one at the root.
� Careful with precision.

02-05-2006 Alexandre David, MVP'06 29

02-05-2006 Alexandre David, MVP'06 30

Experiments

Analysis validated by
experimental results.
It works. ☺

02-05-2006 Alexandre David, MVP'06 31

Parallel Best-First Search
� Avoid bottleneck with one global open list.
� Local open lists must synchronize and

share their best nodes.
� Different communication schemes.

� Distributed cycle detection: Hash nodes to
map them on specific processors (local
check) but degrades performance.

02-05-2006 Alexandre David, MVP'06 32

Acceleration Anomalies

02-05-2006 Alexandre David, MVP'06 33

Deceleration Anomalies

