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Search Algorithms for Discrete 
Optimization Problems 
(Chapter 11)

Alexandre David
B2-206

Discrete optimization problems are also referred as combinatorial problems. 
They are computationally expensive problems with significant theoretical and 
practical interests. These algorithms systematically search the space of 
possible solutions for optimal ones.
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Today
Discrete optimization – basics.
Sequential search algorithms.
Parallel depth-first search.
Parallel best-first search.
Speedup anomalies.
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Discrete Optimization Problems 
(DOP)
Tuple (S,f ) where

S is a finite (or countable) set of feasible 
solutions.
The function f is the cost f : S →R.

Objective: Find a solution xopt∈S s.t.
f(xopt) ≤ f(x) for all x∈S.
Applications: Planning, scheduling, layout 
of VLSI chips, etc …
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The 0/1 Integer-Linear-
Programming Problem
Input: an m *m matrix A, an m *1 vector 
b, and an n *1 vector c.
Find vector x of 0/1 s.t.

The constraint                is satisfied.
The function                   is minimized.
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The 8-Puzzle Problem

S = All paths from initial
to final configurations.

Function f =number of moves.



6

02-05-2006 Alexandre David, MVP'06 6

DOP
The feasible space S is typically very large.
Reformulate a DOP as the problem of 
finding the minimum cost-path from an 
initial node to goal node(s).
S contains paths.
The graph is called the state-space, the 
nodes are called states.
Often, f=sum of the edge costs.

A terminal node has no successor. All the other nodes are non-terminal nodes.
Point of reformulating a DOP as a graph search problem: Can be solved using 
branch-and-bound & other search algorithm to avoid searching the whole set 
S.
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0/1 Integer-Linear-
Programming Problem Revisited

5  2   1   2
A= 1  -1  -1 2

3  1   1   3

8
b=  2

5
c=

2
1

-1
-2

5x1 + 2x2 + x3 + 2x4 ≥ 8
x1 - x2 - x3 + 2x4 ≥ 2
3x1 + x2 +x3 +3x4 ≥ 5

Constraints

f(x) = 2x1 + x2 – x3 - 2x4 Cost
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x1 fixed, x2 x3 x4 free.

We don’t need to
search the whole
graph.
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Heuristics
Often possible to estimate the cost to 
reach goal states from an intermediate 
state.

Heuristic estimate.
If the heuristic is guaranteed to be a lower 
bound on the cost then it is an admissible
heuristic.
Good for pruning the search.

8-puzzle problem: Manhattan distance.
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Sequential Search Algorithms
Trees: Each successor leads to an 
unexplored state.
(General) Graphs: States reachable by 
several paths → check explored states.
Depth-first search (trees) – storage linear 
in function of the depth.
Depth-first branch-and-bound.
Iterative deepening DFS, A*.

Avoid being stuck in a branch.

Iterative deepening: Fix a max depth and increase it if solutions were not found 
to search again. Finds paths but not least cost paths.
Iterative deepening A*: Same principle but with a cost bound. Finds optimal 
solutions if the heuristic function is admissible.
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Store ancestor
state:
• trace
• cycle detection.

DFS
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Best First Search
2 lists:

States to be explored on the open list.
States explored on the closed list.
Choose best from open list, replace if find 
better states – more memory.

A* algorithm:
l(x)=g(x)+h(x) used to order the search.
g(x): from init to x.
h(x): from x to goal.

passed

waiting

Worse memory complexity: Proportional to the number of states explored, not 
the depth.
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Sequential vs. Parallel Search
Overhead for parallel search (as usual 
communication, contention, load 
imbalance).
Big difference with other algorithms: 
Amount of work can be very different
because different parts of the search space 
are explored.

Super-linear anomalies.
Critical issue: Distribution of the search space.
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Parallel DFS
Static partitioning: Assign a processor per 
branch from the root: Load imbalance.
Dynamic partitioning: Idle processors 
request work from busy ones.

Assume the search is done on disjoint parts of 
the search space – otherwise duplicate work.
Local stack of states to explore.
Recipient/donor; see worker model.

When a processor finds the goal, all processors are stopped.
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Generic Scheme for Load 
Balancing

Respond
messages

Do unit of
work

Select a processor Request
messages

reject

try

done work to do

2 modes: Processor active (orange) or inactive (green), w.r.t. computations.
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Work Splitting
Work-splitting strategies:

Send nodes near bottom of the stack (root).
Send nodes near end.
Send some nodes from each level (stack 
splitting).

Half-split: ½ of the stack split – difficult to 
estimate the size of the sub-trees.
Do not send nodes beyond the cutoff 
depth. Why?

We don’t want to have either the donor or the recipient to become idle too 
soon.
Usually, sub-trees are larger near the root than near the cutoff depth.
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Load Balancing
Which processor to ask?

Asynchronous Round Robin.
Ask to (local_target++)%p.
+ asynchronous, - even work.

Global Round Robin.
Ask to (global_target++)%p.
- contention, + even work.

Random Polling.
+ + ?
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Analysis
How to analyze?
What’s W? WP?
Problem:

The execution time depends on the search 
primarily (and secondarily on the size of the 
input).
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Analysis
Compute overhead T0 (as usual) from 
communication, idling, contention, and 
termination detection.
In addition the search overhead may add 
another term (WP/W). Assume = 1.
Distinguish executed search and algorithm.
Problem: Dynamic communication 
schemes, difficult to derive an exact 
expression.

Idling time negligible to communication time.
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Analysis
Get an upper-bound, i.e., worst case.
Assume

Work can be partitioned as long as > ε.
A reasonable work-splitting is available.
α-splitting: Both partitions of a work w have at 
least αw work.

Quantify the number of (work) requests.
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Analysis
Donor has wi → wj + wk.
Assumption: wj > αwi, wk > αwi.
After transfer, donor and recipient have
≤ (1-α)wi.
w0,…,wp-1 ≤ w. Split all (2p pieces), largest 
≤ (1-α)w.
If every processor gets a request once, 
then each piece has been split once ⇒
maximum load reduced by (1-α) at any 
processor.
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Analysis
Load balancing in the term V(p): After 
every V(p) requests, each processor 
receives at least one request.
After every V(p) requests, the maximum 
work decreases by at least (1-α).

i*V(p) requests → remaining work ≤ (1-α)iW.
To have remaining work ≤ ε, the number of 
requests is O (V(p)logW ).
⇒ T0=tcommV(p)logW.
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Computation of V(p)
Asynchronous round robin: Worst case 
when p-1 processors request the same 
processor, but they all get it wrong.

0 asks to 1, 2, 3… and finally p-1.
Same for all p-1 processes ⇒ V(p)=O (p2 ).

Global round robin: One sequence for all 
processor. V(p)=p.
Random: Compute average in O (p logp).

Personally, I don’t agree with the upper bound in the book, I’ll rather write (p-
1)2.
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Analysis (cont.)
We want the isoefficiency function W=KT0.

We have T0=O (V(p)logW ).
We have V(p) for different load balancing 
schemes.
⇒ solve W =f(p).

Take contention into account for global 
round robin → O (p2 logp), and for random 
O (p log2p).

Contention: The global counter must be incremented O (p logW) times in O 
(W/p) time.
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Analysis
Asynchronous round robin: Poor 
performance because of its large number 
of work requests.
Global round robin: Poor performance 
because of contention at counter, even 
with its least number of requests. 
Random polling: Desirable compromise.

Random is good sometimes, but it’s a uniform random distribution.
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Termination Detection
Normally simple token based algorithm 
works but not here. When a processor 
goes idle, it may receive more work later.
Dijkstra’s token algorithm.
Tree-based algorithm.
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Dijsktra’s Token Termination 
Detection Algorithm

0

P0 idle initiates algorithm.

1

It sends a white token.

2

Pi idle has token: pass it.

…

P0 receives the white
token and is idle: stop.

0 1 2 3

Pj (not idle) sends work to Pi, j>i: Pj becomes black.

3

When Pj becomes idle it passes
a black token and becomes white
again.

…

P0 receives a black token:
retry.

Black/white or red/green, whatever.
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Tree-Based Termination 
Detection
Weight 1 from the root at the start.
Weights are divided and go down the tree 
with the work.
When work is done, weights are returned 
from the source.
Terminate when weight is one at the root. 
Careful with precision.
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Experiments

Analysis validated by
experimental results.
It works. ☺
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Parallel Best-First Search
Avoid bottleneck with one global open list.
Local open lists must synchronize and 
share their best nodes.

Different communication schemes.

Distributed cycle detection: Hash nodes to 
map them on specific processors (local 
check) but degrades performance.
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Acceleration Anomalies
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Deceleration Anomalies


