
1

Search Algorithms for Discrete
Optimization Problems
(Chapter 11)

Alexandre David
B2-206

Discrete optimization problems are also referred as combinatorial problems.
They are computationally expensive problems with significant theoretical and
practical interests. These algorithms systematically search the space of
possible solutions for optimal ones.

2

02-05-2006 Alexandre David, MVP'06 2

Today
Discrete optimization – basics.
Sequential search algorithms.
Parallel depth-first search.
Parallel best-first search.
Speedup anomalies.

3

02-05-2006 Alexandre David, MVP'06 3

Discrete Optimization Problems
(DOP)
Tuple (S,f) where

S is a finite (or countable) set of feasible
solutions.
The function f is the cost f : S →R.

Objective: Find a solution xopt∈S s.t.
f(xopt) ≤ f(x) for all x∈S.
Applications: Planning, scheduling, layout
of VLSI chips, etc …

4

02-05-2006 Alexandre David, MVP'06 4

The 0/1 Integer-Linear-
Programming Problem
Input: an m *m matrix A, an m *1 vector
b, and an n *1 vector c.
Find vector x of 0/1 s.t.

The constraint is satisfied.
The function is minimized.

5

02-05-2006 Alexandre David, MVP'06 5

The 8-Puzzle Problem

S = All paths from initial
to final configurations.

Function f =number of moves.

6

02-05-2006 Alexandre David, MVP'06 6

DOP
The feasible space S is typically very large.
Reformulate a DOP as the problem of
finding the minimum cost-path from an
initial node to goal node(s).
S contains paths.
The graph is called the state-space, the
nodes are called states.
Often, f=sum of the edge costs.

A terminal node has no successor. All the other nodes are non-terminal nodes.
Point of reformulating a DOP as a graph search problem: Can be solved using
branch-and-bound & other search algorithm to avoid searching the whole set
S.

7

02-05-2006 Alexandre David, MVP'06 7

0/1 Integer-Linear-
Programming Problem Revisited

5 2 1 2
A= 1 -1 -1 2

3 1 1 3

8
b= 2

5
c=

2
1

-1
-2

5x1 + 2x2 + x3 + 2x4 ≥ 8
x1 - x2 - x3 + 2x4 ≥ 2
3x1 + x2 +x3 +3x4 ≥ 5

Constraints

f(x) = 2x1 + x2 – x3 - 2x4 Cost

8

02-05-2006 Alexandre David, MVP'06 8

x1 fixed, x2 x3 x4 free.

We don’t need to
search the whole
graph.

9

02-05-2006 Alexandre David, MVP'06 9

Heuristics
Often possible to estimate the cost to
reach goal states from an intermediate
state.

Heuristic estimate.
If the heuristic is guaranteed to be a lower
bound on the cost then it is an admissible
heuristic.
Good for pruning the search.

8-puzzle problem: Manhattan distance.

10

02-05-2006 Alexandre David, MVP'06 10

Sequential Search Algorithms
Trees: Each successor leads to an
unexplored state.
(General) Graphs: States reachable by
several paths → check explored states.
Depth-first search (trees) – storage linear
in function of the depth.
Depth-first branch-and-bound.
Iterative deepening DFS, A*.

Avoid being stuck in a branch.

Iterative deepening: Fix a max depth and increase it if solutions were not found
to search again. Finds paths but not least cost paths.
Iterative deepening A*: Same principle but with a cost bound. Finds optimal
solutions if the heuristic function is admissible.

11

02-05-2006 Alexandre David, MVP'06 11

Store ancestor
state:
• trace
• cycle detection.

DFS

12

02-05-2006 Alexandre David, MVP'06 12

Best First Search
2 lists:

States to be explored on the open list.
States explored on the closed list.
Choose best from open list, replace if find
better states – more memory.

A* algorithm:
l(x)=g(x)+h(x) used to order the search.
g(x): from init to x.
h(x): from x to goal.

passed

waiting

Worse memory complexity: Proportional to the number of states explored, not
the depth.

13

02-05-2006 Alexandre David, MVP'06 13

Sequential vs. Parallel Search
Overhead for parallel search (as usual
communication, contention, load
imbalance).
Big difference with other algorithms:
Amount of work can be very different
because different parts of the search space
are explored.

Super-linear anomalies.
Critical issue: Distribution of the search space.

14

02-05-2006 Alexandre David, MVP'06 14

Parallel DFS
Static partitioning: Assign a processor per
branch from the root: Load imbalance.
Dynamic partitioning: Idle processors
request work from busy ones.

Assume the search is done on disjoint parts of
the search space – otherwise duplicate work.
Local stack of states to explore.
Recipient/donor; see worker model.

When a processor finds the goal, all processors are stopped.

15

02-05-2006 Alexandre David, MVP'06 15

Generic Scheme for Load
Balancing

Respond
messages

Do unit of
work

Select a processor Request
messages

reject

try

done work to do

2 modes: Processor active (orange) or inactive (green), w.r.t. computations.

16

02-05-2006 Alexandre David, MVP'06 16

Work Splitting
Work-splitting strategies:

Send nodes near bottom of the stack (root).
Send nodes near end.
Send some nodes from each level (stack
splitting).

Half-split: ½ of the stack split – difficult to
estimate the size of the sub-trees.
Do not send nodes beyond the cutoff
depth. Why?

We don’t want to have either the donor or the recipient to become idle too
soon.
Usually, sub-trees are larger near the root than near the cutoff depth.

17

02-05-2006 Alexandre David, MVP'06 17

Load Balancing
Which processor to ask?

Asynchronous Round Robin.
Ask to (local_target++)%p.
+ asynchronous, - even work.

Global Round Robin.
Ask to (global_target++)%p.
- contention, + even work.

Random Polling.
+ + ?

18

02-05-2006 Alexandre David, MVP'06 18

Analysis
How to analyze?
What’s W? WP?
Problem:

The execution time depends on the search
primarily (and secondarily on the size of the
input).

19

02-05-2006 Alexandre David, MVP'06 19

Analysis
Compute overhead T0 (as usual) from
communication, idling, contention, and
termination detection.
In addition the search overhead may add
another term (WP/W). Assume = 1.
Distinguish executed search and algorithm.
Problem: Dynamic communication
schemes, difficult to derive an exact
expression.

Idling time negligible to communication time.

20

02-05-2006 Alexandre David, MVP'06 20

Analysis
Get an upper-bound, i.e., worst case.
Assume

Work can be partitioned as long as > ε.
A reasonable work-splitting is available.
α-splitting: Both partitions of a work w have at
least αw work.

Quantify the number of (work) requests.

21

02-05-2006 Alexandre David, MVP'06 21

Analysis
Donor has wi → wj + wk.
Assumption: wj > αwi, wk > αwi.
After transfer, donor and recipient have
≤ (1-α)wi.
w0,…,wp-1 ≤ w. Split all (2p pieces), largest
≤ (1-α)w.
If every processor gets a request once,
then each piece has been split once ⇒
maximum load reduced by (1-α) at any
processor.

22

02-05-2006 Alexandre David, MVP'06 22

Analysis
Load balancing in the term V(p): After
every V(p) requests, each processor
receives at least one request.
After every V(p) requests, the maximum
work decreases by at least (1-α).

i*V(p) requests → remaining work ≤ (1-α)iW.
To have remaining work ≤ ε, the number of
requests is O (V(p)logW).
⇒ T0=tcommV(p)logW.

23

02-05-2006 Alexandre David, MVP'06 23

Computation of V(p)
Asynchronous round robin: Worst case
when p-1 processors request the same
processor, but they all get it wrong.

0 asks to 1, 2, 3… and finally p-1.
Same for all p-1 processes ⇒ V(p)=O (p2).

Global round robin: One sequence for all
processor. V(p)=p.
Random: Compute average in O (p logp).

Personally, I don’t agree with the upper bound in the book, I’ll rather write (p-
1)2.

24

02-05-2006 Alexandre David, MVP'06 24

Analysis (cont.)
We want the isoefficiency function W=KT0.

We have T0=O (V(p)logW).
We have V(p) for different load balancing
schemes.
⇒ solve W =f(p).

Take contention into account for global
round robin → O (p2 logp), and for random
O (p log2p).

Contention: The global counter must be incremented O (p logW) times in O
(W/p) time.

25

02-05-2006 Alexandre David, MVP'06 25

Analysis
Asynchronous round robin: Poor
performance because of its large number
of work requests.
Global round robin: Poor performance
because of contention at counter, even
with its least number of requests.
Random polling: Desirable compromise.

Random is good sometimes, but it’s a uniform random distribution.

26

02-05-2006 Alexandre David, MVP'06 26

Termination Detection
Normally simple token based algorithm
works but not here. When a processor
goes idle, it may receive more work later.
Dijkstra’s token algorithm.
Tree-based algorithm.

27

02-05-2006 Alexandre David, MVP'06 27

Dijsktra’s Token Termination
Detection Algorithm

0

P0 idle initiates algorithm.

1

It sends a white token.

2

Pi idle has token: pass it.

…

P0 receives the white
token and is idle: stop.

0 1 2 3

Pj (not idle) sends work to Pi, j>i: Pj becomes black.

3

When Pj becomes idle it passes
a black token and becomes white
again.

…

P0 receives a black token:
retry.

Black/white or red/green, whatever.

28

02-05-2006 Alexandre David, MVP'06 28

Tree-Based Termination
Detection
Weight 1 from the root at the start.
Weights are divided and go down the tree
with the work.
When work is done, weights are returned
from the source.
Terminate when weight is one at the root.
Careful with precision.

29

02-05-2006 Alexandre David, MVP'06 29

30

02-05-2006 Alexandre David, MVP'06 30

Experiments

Analysis validated by
experimental results.
It works. ☺

31

02-05-2006 Alexandre David, MVP'06 31

Parallel Best-First Search
Avoid bottleneck with one global open list.
Local open lists must synchronize and
share their best nodes.

Different communication schemes.

Distributed cycle detection: Hash nodes to
map them on specific processors (local
check) but degrades performance.

32

02-05-2006 Alexandre David, MVP'06 32

Acceleration Anomalies

33

02-05-2006 Alexandre David, MVP'06 33

Deceleration Anomalies

