Graph Algorithms (Chapter 10)

Alexandre David B2-206

Today

- Recall on graphs.
- Minimum spanning tree (Prim's algorithm).
- Single-source shortest paths (Dijkstra's algorithm).
- All-pair shortest paths (Floyd's algorithm).
- Connected components.

Graphs – Definition

- A graph is a pair (V, E)
 - V finite set of vertices.
 - *E* finite set of edges.
 e ∈ *E* is a pair (*u*, *v*) of vertices.
 Ordered pair → directed graph.
 Unordered pair → undirected graph.

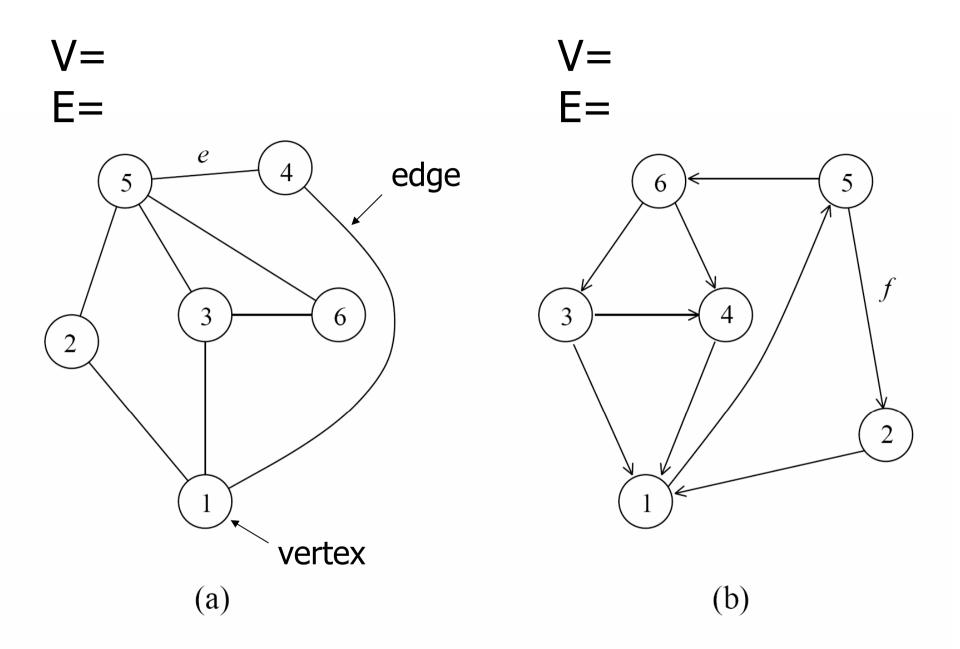


Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs – Edges

Directed graph:

- $(U, V) \in E$ is incident from u and incident to v.
- $(U, V) \in E$: vertex V is adjacent to U.
- Undirected graph:
 - $(U, V) \in E$ is incident on u and v.
 - $(u, v) \in E$: vertices u and v are adjacent to each other.

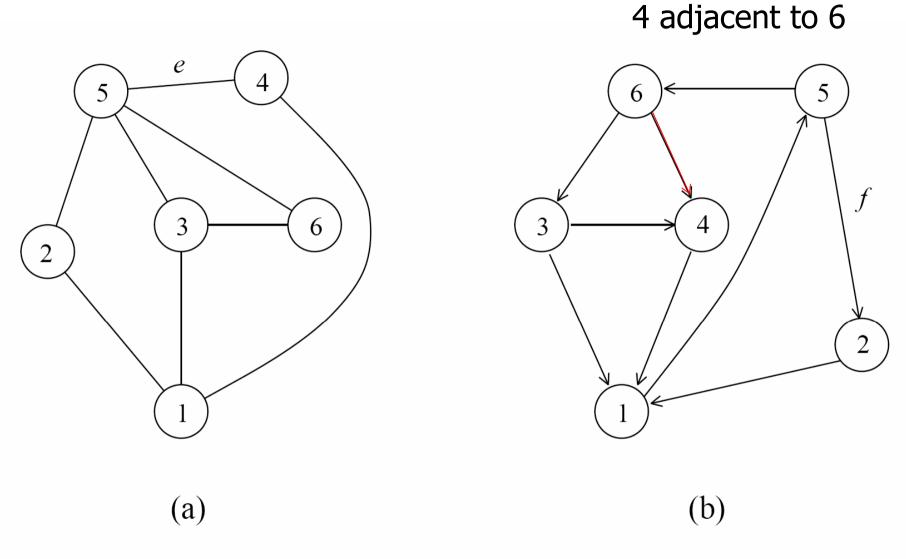
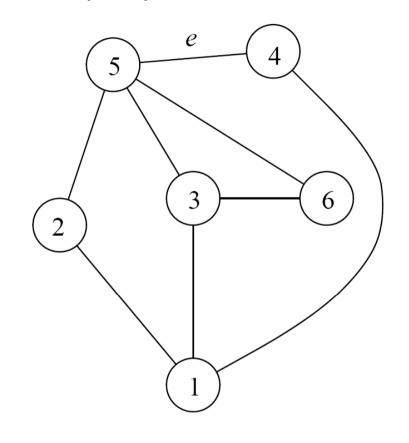


Figure 10.1 (a) An undirected graph and (b) a directed graph.

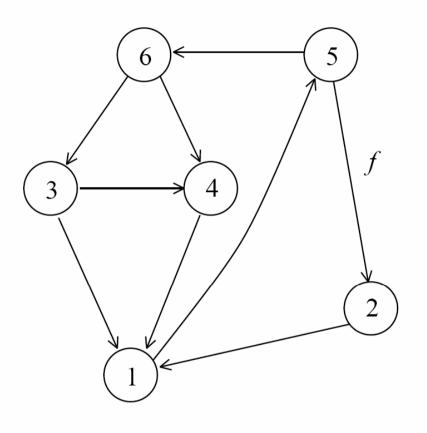
Graphs – Paths

- A path is a sequence of adjacent vertices.
 - Length of a path = number of edges.
 - Path from v to $u \Rightarrow u$ is reachable from v.
 - Simple path: All vertices are distinct.
 - A path is a cycle if its starting and ending vertices are the same.
 - Simple cycle: All intermediate vertices are distinct.

Simple path: Simple cycle: Non simple cycle:



Simple path: Simple cycle: Non simple cycle:



(a) (b)

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs

- Connected graph: ∃ path between any pair.
- G'=(V',E') sub-graph of G=(V,E) if V'⊆V and E'⊆E.
- Sub-graph of G induced by V': Take all edges of E connecting vertices of V'_⊆V.
- Complete graph: Each pair of vertices adjacent.
- Tree: connected acyclic graph. Alexandre David, MVP'06

Sub-graph: Induced sub-graph:

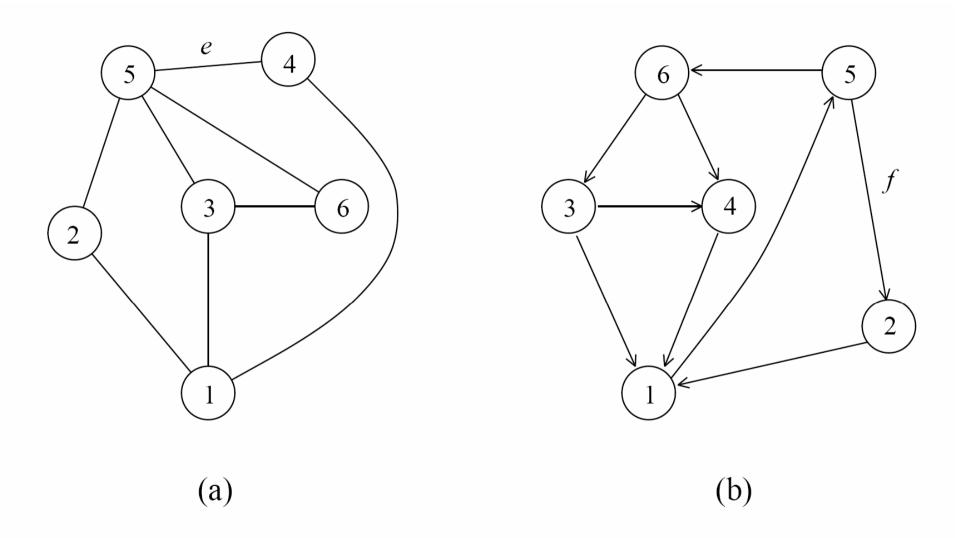


Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graph Representation

- Sparse graph (|E| much smaller than |V|²):
 - Adjacency list representation.
- Dense graph:
 - Adjacency matrix.
- For weighted graphs (V,E,w): weighted adjacency list/matrix.

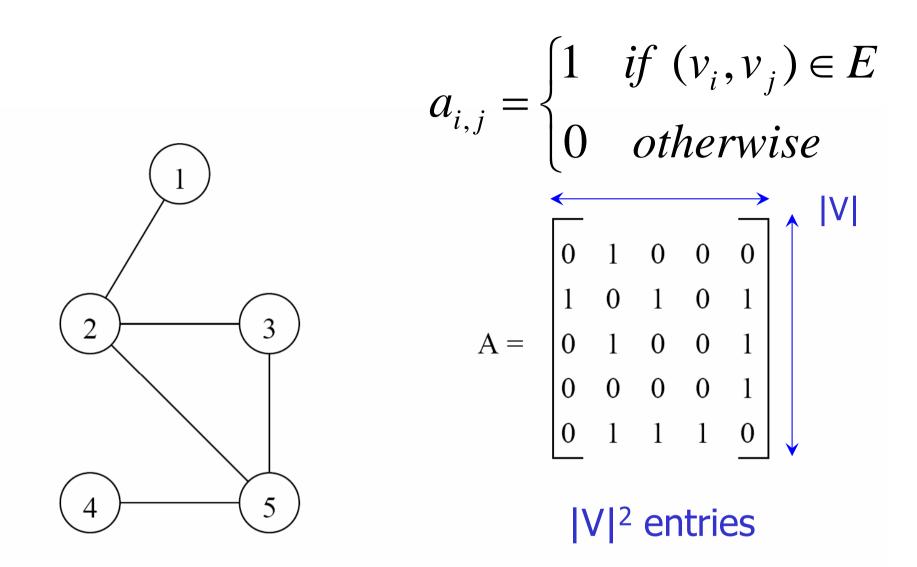


Figure 10.2 An undirected graph and its adjacency matrix representation.

Undirected graph \Rightarrow symmetric adjacency matrix.

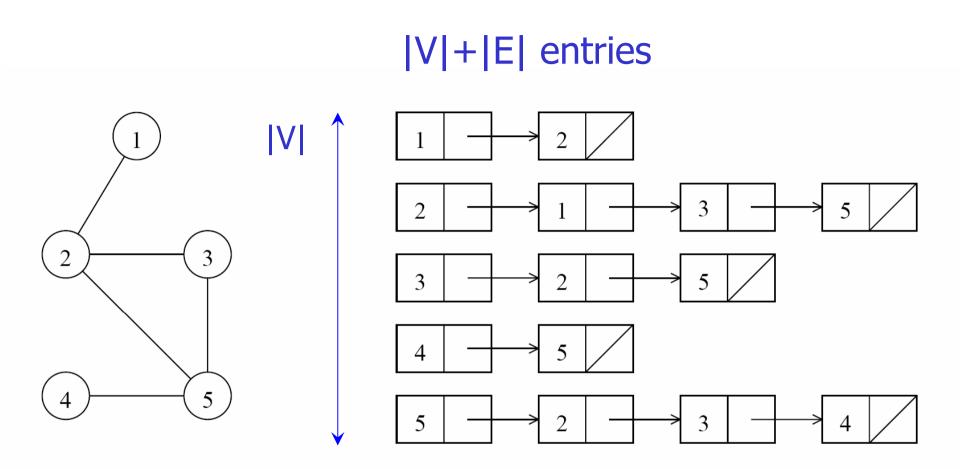


Figure 10.3 An undirected graph and its adjacency list representation.

Minimum Spanning Tree

- We consider undirected graphs.
- Spanning tree of (V,E) = sub-graph
 - being a tree and
 - containing all vertices V.
- Minimum spanning tree of (V,E,w) = spanning tree with minimum weight.
- Example: minimum length of cable to connect a set of computers.

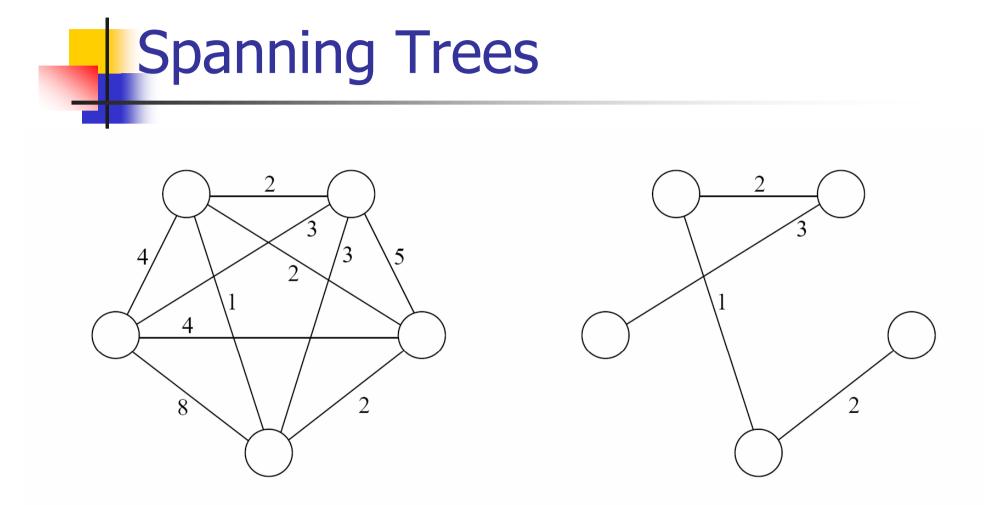


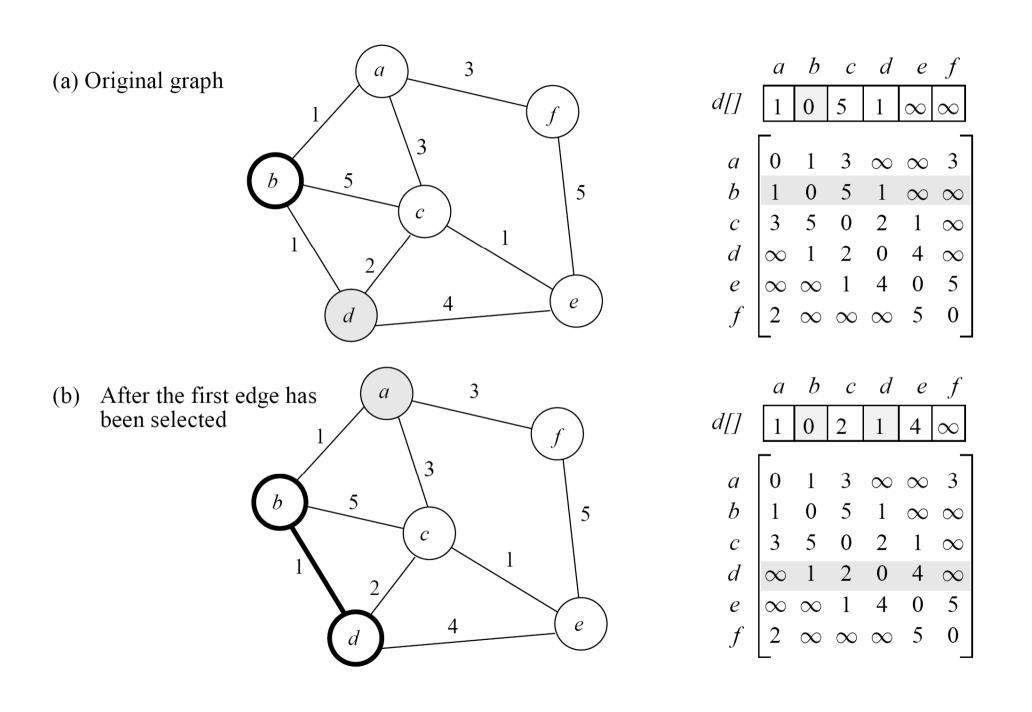
Figure 10.4 An undirected graph and its minimum spanning tree.

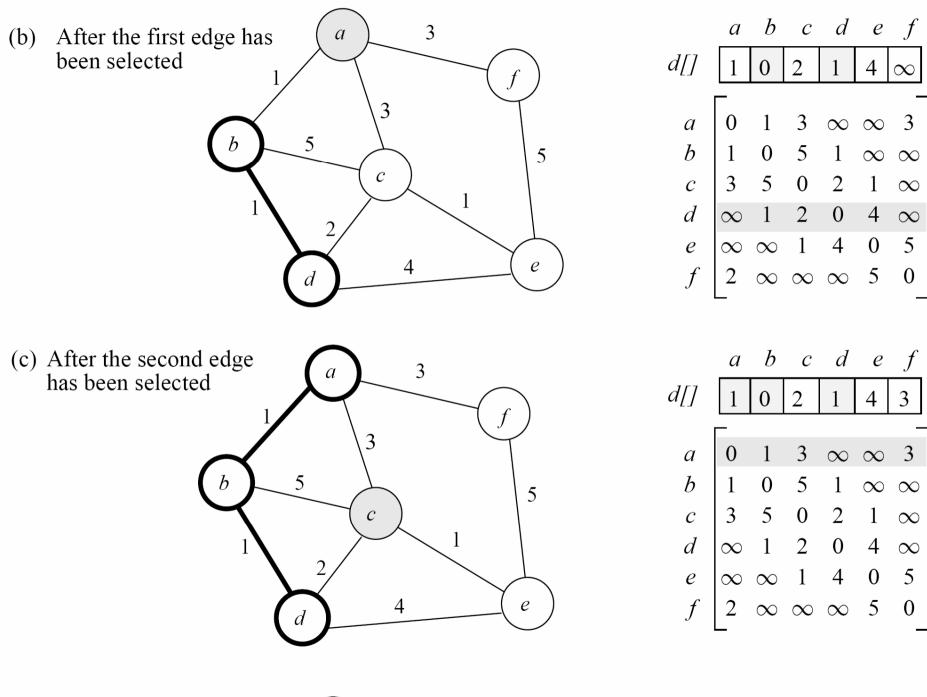
Prim's Algorithm

- Greedy algorithm:
 - Select a vertex.
 - Choose a new vertex and edge guaranteed to be in a spanning tree of minimum cost.
 - Continue until all vertices are selected.

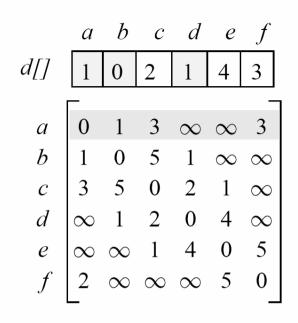
1.	procedure P	RIM_MST(V, E, w, r)							
2.	begin								
3.	$V_T := \{r\}$	}; Vertices of minimum	n spanning tree.						
4.	d[r] := 0								
5.	for all $v \in$	$\in (V - V_T)$ do Weight	ts from V_T to V.						
6.	if edg	e(r, v) exists set $d[v] := w(r, v);$							
7.	else se	et $d[v] := \infty;$							
8.	8. while $V_T \neq V$ do								
9.	begin								
10.	select find a	vertex u such that $d[u] := \min\{d[v] v \in (V \in V)\}$	$V - V_T)$;						
	add $V_T :=$								
12.	update for all	$v \in (V - V_T)$ do							
13.	d[$v] := \min\{d[v], w(u, v)\};$							
14. endwhile									
15. end PRIM_MST									

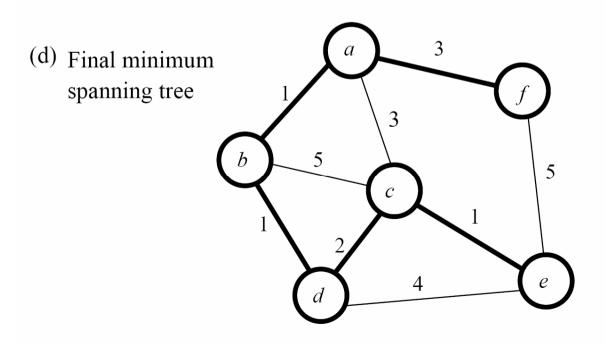
Algorithm 10.1 Prim's sequential minimum spanning tree algorithm.





(c) After the second edge has been selected a 3 f f b 5 c 1 c 1 c 1 e



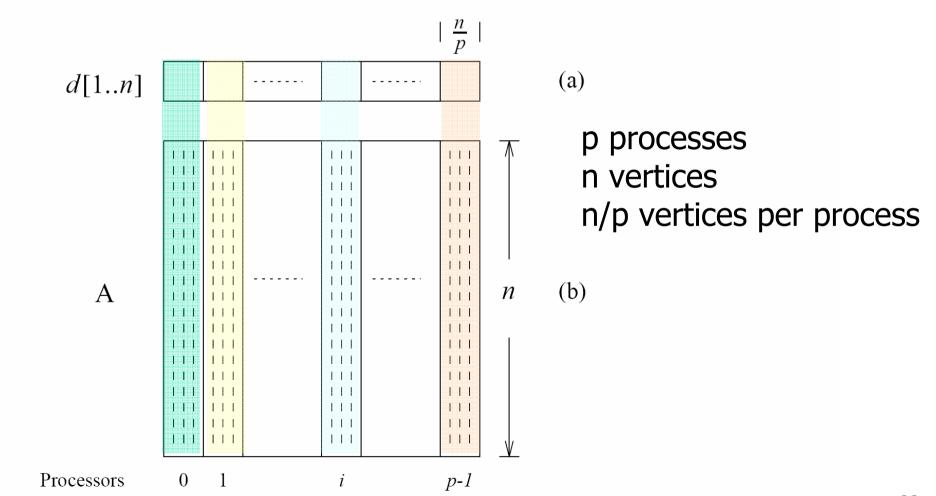


				d		-
d[]	1	0	2	1	1	3
						Г
a	0	1	3	∞	∞	3
b	1	0	5	1	∞	∞
С	3	5	0	2	1	∞
d	∞	1	2	0	4	∞
е	∞	∞	1	4	0	$ \begin{array}{c} 3\\\infty\\\infty\\\infty\\5\\0 \end{array} $
f	2	∞	∞	∞	5	0

Prim's Algorithm

- Complexity $\Theta(n^2)$.
- Cost of the minimum spanning tree: $\sum_{v \in V} d[v]$
- How to parallelize?
 - Iterative algorithm.
 - Any d[v] may change after every loop.
 - But possible to run each iteration in parallel.

1-D Block Mapping



Parallel Prim's Algorithm

1-D block partitioning: V_i per P_i . For each iteration: P_i computes a local min $d_i[u]$. All-to-one reduction to P_0 to compute the global min. One-to-all broadcast of u. Local updates of d[v].

Every process needs a column of the adjacency matrix to compute the update. $\Theta(n^2/p)$ space per process.

Analysis

- The cost to select the minimum entry is $O(n/p + \log p)$.
- The cost of a broadcast is O(log p).
- The cost of local update of the *d* vector is O(n/p).
- The parallel run-time per iteration is O(n/p + log p).
- The total parallel time (*n* iterations) is given by O(n²/p + n log p).

Analysis

- Efficiency = Speedup/# of processes: E=S/p=1/(1+ $\Theta((p \log p)/n)$.
- Maximal degree of concurrency = n.
- To be cost-optimal we can only use up to n/logn processes.
- Not very scalable.

Single-Source Shortest Paths: Dijkstra's Algorithm

- For (V,E,w), find the shortest paths from a vertex to all other vertices.
 - Shortest path=minimum weight path.
 - Algorithm for directed & undirected with non negative weights.
- Similar to Prim's algorithm.
 - Prim: store d[u] minimum cost edge connecting a vertex of V_T to u.
 - Dijkstra: store I[u] minimum cost to reach u from s by a path in V myP'06

Parallel formulation: Same as Prim's algorithm.

```
procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
1.
2.
      begin
3.
         V_T := \{s\};
         for all v \in (V - V_T) do
4.
5.
            if (s, v) exists set l[v] := w(s, v);
6.
            else set l[v] := \infty;
7.
        while V_T \neq V do
         begin
8.
9.
             find a vertex u such that l[u] := \min\{l[v] | v \in (V - V_T)\};
10.
            V_T := V_T \cup \{u\};
            for all v \in (V - V_T) do
11.
12.
                l[v] := \min\{l[v], l[u] + w(u, v)\};
13.
         endwhile
     end DIJKSTRA_SINGLE_SOURCE_SP
14
```

Algorithm 10.2 Dijkstra's sequential single-source shortest paths algorithm.

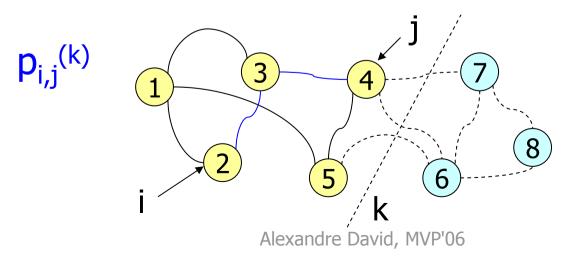
All-Pairs Shortest Paths

- For (V,E,w), find the shortest paths between all pairs of vertices.
 - Dijkstra's algorithm: Execute the single-source algorithm for *n* vertices $\rightarrow \Theta(n^3)$.
 - Floyd's algorithm.

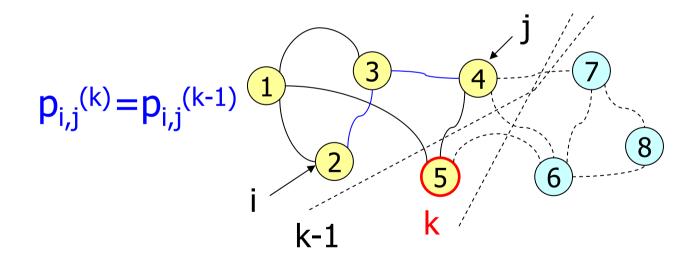
All-Pairs Shortest Paths – Dijkstra – Parallel Formulation

- Source-partitioned formulation: Each process has a set of vertices and compute the Up to n processes. Solve in Θ(n²).
 - No communication, E=1, but maximal degree of concurrency = n. Poor scalability.
- Source-parallel formulation (p>n):
 - Partition the processes (p/n processes/subset), Up to n^2 processes, $n^2/\log n$ for cost-optimal, in which case solve in $\Theta(n \log n)$.
 - In parallel: n single-source problems.

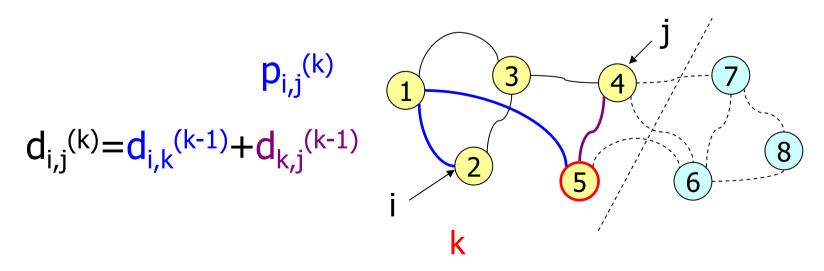
- For any pair of vertices v_i, v_j ∈ V, consider all paths from v_i to v_j whose intermediate vertices belong to the set {v₁,v₂,...,v_k}.
- Let p_{i,j}^(k) (of weight d_{i,j}^(k)) be the minimumweight path among them.



If vertex v_k is not in the shortest path from v_i to v_j , then $p_{i,j}^{(k)} = p_{i,j}^{(k-1)}$.

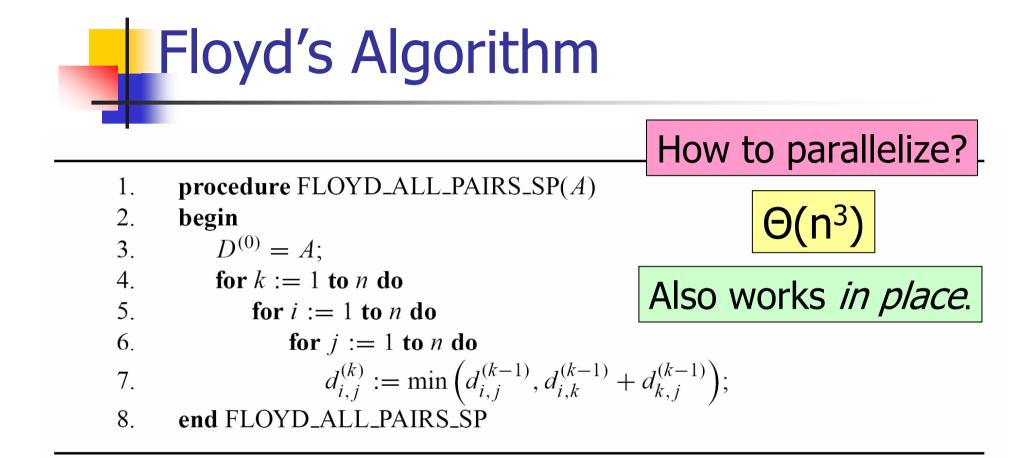


If v_k is in p_{i,j}^(k), then we can break p_{i,j}^(k) into two paths - one from v_i to v_k and one from v_k to v_j. Each of these paths uses vertices from {v₁, v₂,...,v_{k-1}}.



Recurrence equation:

- $d_{i,j}^{(k)} = \begin{cases} w(v_i, v_j) & \text{if } k = 0\\ \min(d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}) & \text{if } k \ge 1 \end{cases}$
 - Length of shortest path from v_i to $v_j = d_{i,j}^{(n)}$. Solution set = a matrix.



Algorithm 10.3 Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs shortest paths of the graph G = (V, E) with adjacency matrix A.

Parallel Formulation

- 2-D block mapping:
 - Each of the p processes has a sub-matrix $(n/\sqrt{p})^2$ and computes its D^(k).
 - Processes need access to the corresponding k row and column of D^(k-1).
 - kth iteration: Each processes containing part of the kth row sends it to the other processes in the same column. Same for column broadcast on rows.

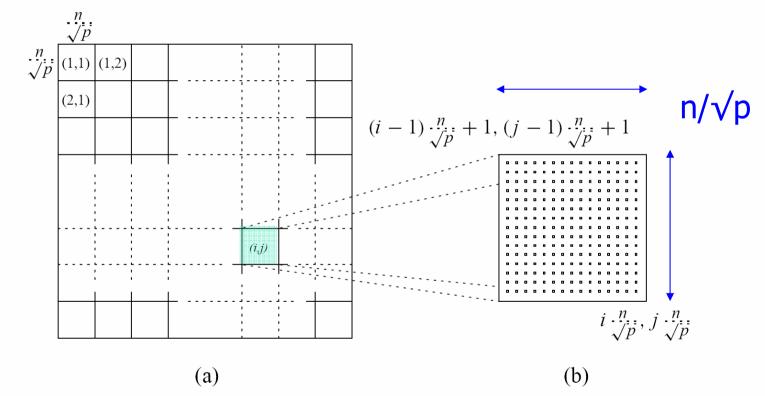


Figure 10.7 (a) Matrix $D^{(k)}$ distributed by 2-D block mapping into $\sqrt{p} \times \sqrt{p}$ subblocks, and (b) the subblock of $D^{(k)}$ assigned to process $P_{i,j}$.

Communication

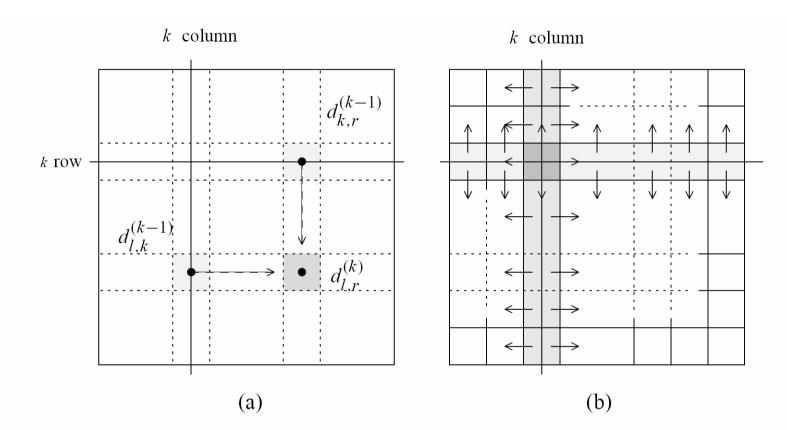


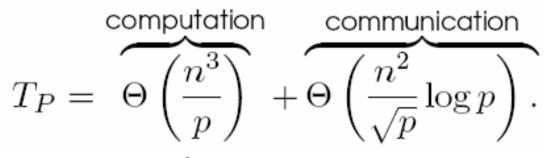
Figure 10.8 (a) Communication patterns used in the 2-D block mapping. When computing $d_{i,j}^{(k)}$, information must be sent to the highlighted process from two other processes along the same row and column. (b) The row and column of \sqrt{p} processes that contain the k^{th} row and column send them along process columns and rows.

Parallel Algorithm

- 1. **procedure** FLOYD_2DBLOCK $(D^{(0)})$
- 2. **begin**
- 3. **for** k := 1 **to** n **do**
- 4. begin
- 5. each process $P_{i,j}$ that has a segment of the k^{th} row of $D^{(k-1)}$; broadcasts it to the $P_{*,j}$ processes;
- 6. each process $P_{i,j}$ that has a segment of the k^{th} column of $D^{(k-1)}$; broadcasts it to the $P_{i,*}$ processes;
- 7. each process waits to receive the needed segments;
- 8. each process $P_{i,j}$ computes its part of the $D^{(k)}$ matrix;
- 9. **end**
- 10. end FLOYD_2DBLOCK

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. $P_{*,j}$ denotes all the processes in the j^{th} column, and $P_{i,*}$ denotes all the processes in the i^{th} row. The matrix $D^{(0)}$ is the adjacency matrix.

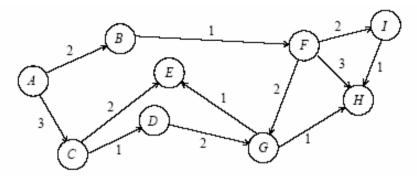
Analysis



- $E=1/(1+\Theta((\sqrt{p}\log p)/n))$.
- Cost optimal if up to O((n/logn)²) processes.
- Possible to improve: pipelined 2-D block mapping: No broadcast, send to neighbour. Communication: Θ(n), up to O(n²) processes & cost optimal.

All-Pairs Shortest Paths: Matrix Multiplication *Based* Algorithm

- Multiplication of the weighted adjacency matrix with itself – except that we replace multiplications by additions, and additions by minimizations.
- The result is a matrix that contains shortest paths of length 2 between any pair of nodes.
- It follows that Aⁿ contains all shortest paths.

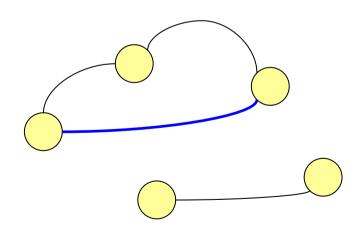


Serial algorithm not $\infty \ 0 \ \infty \ \infty \ \infty \ 1 \ \infty \ \infty \ \infty$ optimal but we can $\infty \propto 0 \ 1 \ 2 \propto \infty \propto \infty$ use *n*³/log*n* processes $\infty \infty \infty 0 \infty \infty 2 \infty \infty$ A^2 $A^1 =$ $\infty \infty \infty \infty \infty 0 \infty \infty \infty \infty$ to run in $O(\log^2 n)$. $\infty \propto \infty \propto \infty \propto 0$ 2 3 2 $\infty \propto \infty \propto 1 \propto 0 \ 1 \propto$ $1 \propto 0$ $\infty \propto \infty \propto \infty \propto \infty \propto 0 \infty$ $\infty \infty \infty \infty \infty \infty \infty \infty 0 \infty$ $\infty \infty \infty \infty \infty \infty \infty \infty 1 0$ $\infty \propto \infty \propto \infty \propto \infty \propto 1$ 0 53 -3 -5 ∞ 0 ∞ ∞ 4 1 3 4 3 ∞ 0 ∞ ∞ 4 1 3 4 3 $\infty \propto 0$ 1 2 ∞ 3 4 ∞ $\infty \propto 0$ 1 2 ∞ 3 4 ∞ ∞ ∞ ∞ 0 3 ∞ 2 3 ∞ $\infty \infty \infty 0 3 \infty 2 3 \infty$ $A^{8} =$ $A^{4} =$ $\infty \propto \infty \propto 0 \propto \infty \propto \infty$ $\infty \infty \infty \infty 0 \infty \infty \infty \infty$ ∞ ∞ ∞ ∞ 3 0 2 3 2 $\infty \infty \infty \infty 3 0 2 3$ 2 $\infty \propto \infty \propto 1 \propto 0 1 \infty$ $\infty \propto \infty \propto 1 \propto 0 1 \infty$ $\infty \propto \infty \propto \infty \propto \infty \propto 0 \propto$ $\infty \propto \infty \propto \infty \propto \infty \propto 0 \infty$ $\infty \propto \infty \propto \infty \propto \infty \propto 1$ 0 $\infty \propto \infty \propto \infty \propto \infty \propto 1$ 0

41

Transitive Closure

- Find out if any two vertices are connected.
- G*=(V,E*) where E*={(v_i,v_j)|∃ a path from v_i to v_j in G}.



Transitive Closure

- Start with $D = (a_{i,j} \text{ or } \infty)$.
- Apply one all-pairs shortest paths algorithm.
- Solution:

$$a_{i,j}^* = \begin{cases} \infty & \text{if } d_{i,j} = \infty \\ 1 & \text{if } d_{i,j} > 0 \text{ or } i = j \end{cases}$$

Connected Components

Connected components of G=(V,E) are the maximal disjoint sets $C_1,...,C_k$ s.t. $V=UC_k$ and $u,v \in C_i$ iff u reachable from v and v reachable from u.

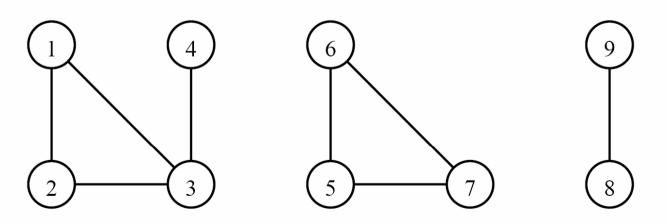
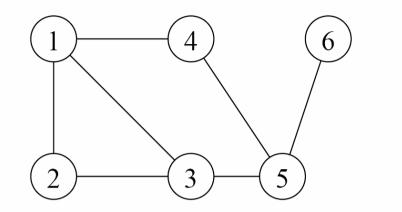
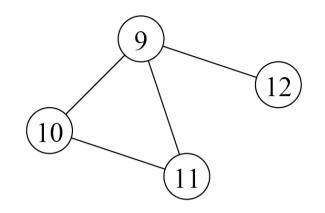


Figure 10.10 A graph with three connected components: {1, 2, 3, 4}, {5, 6, 7}, and {8, 9}.

DFS Based Algorithm

• DFS traversal of the graph \rightarrow forest of (DFS) spanning trees.





(a)

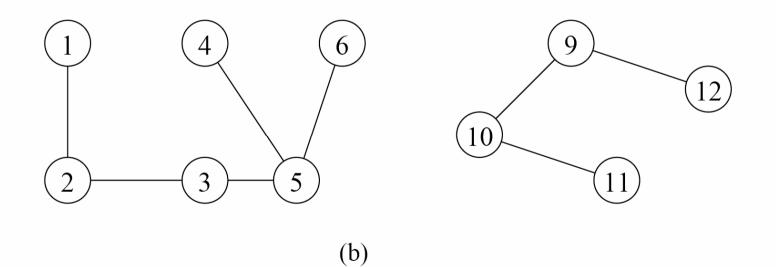
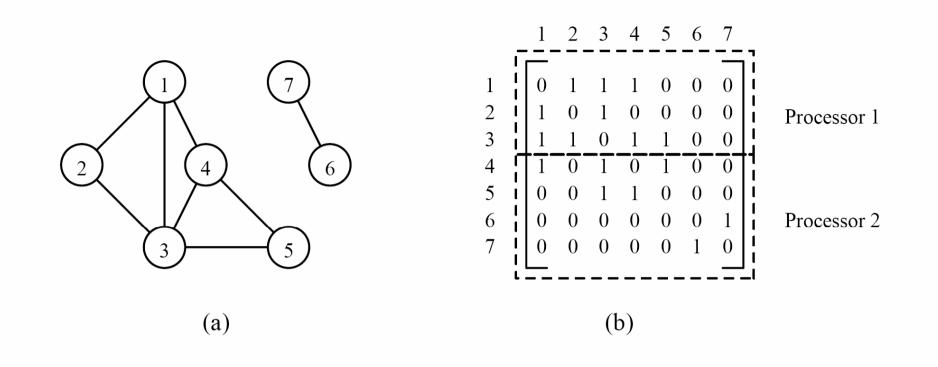


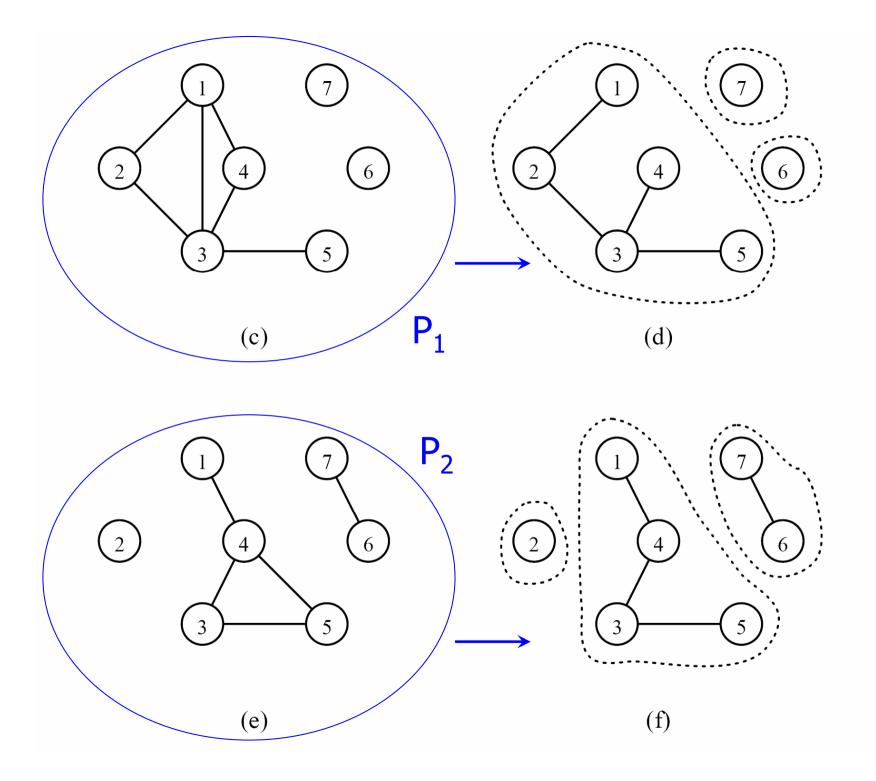
Figure 10.11 Part (b) is a depth-first forest obtained from depth-first traversal of the graph in part (a). Each of these trees is a connected component of the graph in part (a).

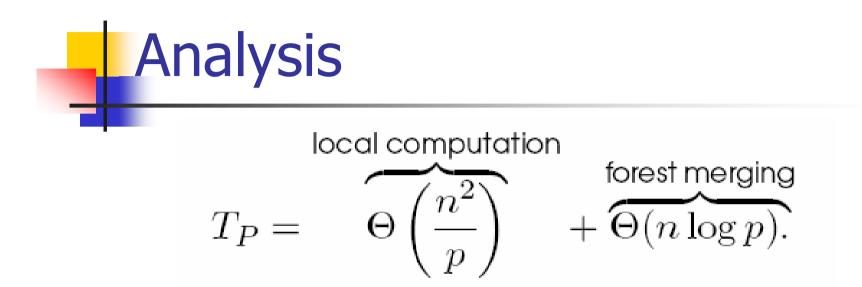
Parallel Formulation

- Partition G into p sub-graphs. P_i has $G_i = (V, E_i)$.
 - Each P_i computes the spanning forest of G_i.
 - Merge the forests pair-wise.
- Each merge possible in $\Theta(n)$.
 - Not described in the book out of scope.
 - Find if an edge of A has its vertices in B:
 - no for all \rightarrow union of 2 disjoint sets.
 - yes for one \rightarrow no union.



Partition the adjacency matrix. 1-D partitioning in p stripes of n/p consecutive rows.





• $E=1/(1+\Theta((p \log p)/n))$.

Up to O(n/logn) to be cost-optimal.
Performance similar to Prim's algorithm.