Graph Algorithms

!'_ (Chapter 10)

Alexandre David
B2-206

Today

= Recall on graphs.

= Minimum spanning tree (Prim’s algorithm).

= Single-source shortest paths (Dijkstra’s
algorithm).

= All-pair shortest paths (Floyd’s algorithm).

= Connected components.

Graphs — Definition

= A graph is a pair (V£)
« V finite set of vertices.
« £ finite set of edges.
e ¢ £ is a pair (u,v) of vertices.
Ordered pair — directed graph.
Unordered pair — undirected graph.

(a)
Figure 10.1

vertex

(b)

(a) An undirected graph and (b) a directed graph.

Graphs — Edges

= Directed graph:
= (4,v) e E isincident from v and incident to v.
« (U,v) e E: vertex vis adjacent to v.

= Undirected graph:

=« (4,v) e E isincident on vand v.

« (4,v) e E: vertices vand vare adjacent to
each other.

4 adjacent to 6

(a) (b)
Figure 10.1 (a) An undirected graph and (b) a directed graph.

iGraphs — Paths

= A path is a sequence of adjacent vertices.
= Length of a path = number of edges.
« Path from vto v = wvis reachable from v.
« Simple path: All vertices are distinct.

= A path is a cycle if its starting and ending
vertices are the same.

= Simple cycle: All intermediate vertices are
distinct.

Simple path: Simple path:
Simple cycle: Simple cycle:
Non simple cycle: Non simple cycle:

G

(a) (b)
Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs

= Connected graph: 3 path between any
pair.

s G'=(V',E) sub-graph of G=(V,E) if V'cV
and E'cE.

= Sub-graph of G induced by V': Take all
edges of E connecting vertices of V'cV.

= Complete graph: Each pair of vertices
adjacent.

= [ree: connected acyclic graph.

Sub-graph:
Induced sub-graph:

(a)
Figure 10.1

(b)
(a) An undirected graph and (b) a directed graph.

10

Graph Representation

= Sparse graph (|E| much smaller than |V|?):
= Adjacency list representation.

= Dense graph:
= Adjacency matrix.

= For weighted graphs (V,E,w): weighted
adjacency list/matrix.

11

(

1 if (v,v;)eE

0 otherwise

.
< >,V
O 1 0 0 O
1 0 1 0 1
2 @ A= (0 1 0 0 1
0O 0 0 O 1
o 11 o),

@ \9 V|2 entries

Figure 10.2 An undirected graph and its adjacency matrix representation.

Undirected graph = symmetric adjacency matrix.

12

|IV|+|E| entries

A
@ V| 1 | 2
2 >] 3 5
3 2 21 5
4 > 5
o ° 5 /2 ,:} 4
Y

Figure 10.3 An undirected graph and its adjacency list representation.

13

Minimum Spanning Tree

= We consider undirected graphs.

= Spanning tree of (V,E) = sub-graph
= being a tree and
= containing all vertices V.

= Minimum spanning tree of (V,E,w) =
spanning tree with minimum weight.

= Example: minimum length of cable to
connect a set of computers.

14

28-04-2006

Figure 10.4 An undirected graph and its minimum spanning tree.

Alexandre David, MVP'06

15

Prim’s Algorithm

= Greedy algorithm:
= Select a vertex.

= Choose a new vertex and edge guaranteed to
be in a spanning tree of minimum cost.

= Continue until all vertices are selected.

16

o oA U

procedure PRIM_MST(V, E, w, r)

begin
Ve = {r};
diiliE=105

forallve (V—TVr)do
i edope (7

Vertices of minimum spanning tree.

i el et el = vl i

else set d[v] := o0;
while I'r #= V' do

Weights from V; to V.

0. begin
10. select find a vertex u such that d[u] := min{d[v]lv € (V — V7)};
11. add Vr = Vr U {u};
12. update for all v € (V*— Vr) do | |
13. d[v] := min{d[v], w(u, v)};
14. endwhile
15. end PRIM_MST
Algorithm 10.1 Prim’s sequential minimum spanning tree algorithm.

17

g e g2guno' g mgagameo
el I B & — < owm V< B & — < own
S|~ = o <+ 3 S|~ R — o <+ @
BVl o o — R Slal 0w o — ¥
Qo] mewvw—~88 ®lof —mowvw —~ 34
a1_013ww2_ 01_013wm2_

—~ T 0 UTTSOV
~
S

df]
a
b
C
d
e

(a) Original graph

(b) After the first edge has
been selected

daf]

L. O ™9

(c) After the second edge
has been selected

daf]

QL. o 9

S

88*—-@0»—

S

28 —wo -

8~l\)omw

8-&0[\)#8

mo-lb-r—'-88

3

e
4

d
1

b
1[0 |2

—
.lrr-.-..
=

(c) After the second edge
has been selected

3 o0 oo 3

1

e

1

d
1

b
1[0 |2

daf]

&
- ©
g g
- =
< o
g «
I, &
—

o)

S

3 o0 oo 3

1

e

Prim’s Algorithm

= Complexity O(n?).
= Cost of the minimum spanning tree: Y d[V]

veV

= How to parallelize?
=« Iterative algorithm.
= Any d[v] may change after every loop.
= But possible to run each iteration in parallel.

21

‘_Ll-D Block Mapping

n
p

(a)

d|1..n]

n/p vertices per process

P processes
n vertices

0

Processors

22

iParaIIeI Prim’s Algorithm

1-D block partitioning: V, per P..
For each iteration:
P. computes a local min d[u].
All-to-one reduction to P, to compute the global min.
One-to-all broadcast of u.
Local updates of d[v].

Every process needs a column of the adjacency
matrix to compute the update.
©(n%/p) space per process.

23

Analysis

= The cost to select the minimum entry is
O(ryp + log p).

= The cost of a broadcast is O(/log p).

= The cost of local update of the d vector is

O(n/p)

= The parallel run-time per iteration is
O(ryp + log p).

= The total parallel time (77 iterations) is
given by O(r¥/p + n log p).

24

Analysis

= Efficiency = Speedup/# of processes:
E=S/p=1/(1+0((p logp)/n).
= Maximal degree of concurrency = n.

= 10 be cost-optimal we can only use up to
nflogn processes.

= Not very scalable.

25

Single-Source Shortest Paths:
iDijkstra’s Algorithm

= For (V,E,w), find the shortest paths from a
vertex to all other vertices.
= Shortest path=minimum weight path.

= Algorithm for directed & undirected with non
negative weights.

= Similar to Prim’s algorithm.

= Prim: store d[u] minimum cost edge
connecting a vertex of V; to u.

= Dijkstra: store [[u] minimum cost to reach u
from s by a path.in, Vr. 26

Parallel formulation: Same as Prim’s algorithm.

PN AW

ket e e \O)
BN = o

procedure DIJKSTRA_SINGLE_SOURCE_SP(V, £, w, s)
begin
Ve = {s};
forallve (V —Vr)do
if (s, v) exasts set /[v] := w(s, v);
else set /[v] := o0;
while V7 =V do

begin
find a vertex « such that /[u] := mm{/[v]|v € (V — V71)};
Vyp =V Ulul;

forallv e (V —Vy)do

[[v] := mn{/[v], [u] + w(u. v)};
endwhile
end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 10.2 Dijkstra’s sequential single-source shortest paths algorithm.

iAII-Pairs Shortest Paths

= For (V,E,w), find the shortest paths
between all pairs of vertices.

= Dijkstra’s algorithm: Execute the single-source
algorithm for n vertices — ©(n3).

= Floyd’s algorithm.

28

All-Pairs Shortest Paths —
Dijkstra — Parallel Formulation

= Source-partitioned formulation: Each

#l pute
th(Up to n processes. Solve in ©(77).

= NOo communication, E=1,

put maximal degree

of concurrency = n. Poor scalability.
= Source-parallel formulation (p>n):

»_Partition the nracesses (n/n nracesses/subset),
Up to 7 processes, n¢/logn for cost-optimal,
in which case solve in ©(7logn).

= In parallel: n single-source problems. .

Floyd’s Algorithm

= For any pair of vertices v, v; € V, consider
all paths from v; to v, whose intermediate
vertices belong to the set {v,,v,,...,V,}.

= Let p;) (of weight d, !9) be the minimum-
weight path among them.

30

iFond’s Algorithm

s If vertex v, is not in the shortest path from
v, to v;, then p; ;0 = p, (1),

p, {(9=p, (k1)

31

iFond’s Algorithm

= If v, is in p;;9, then we can break p;
into two paths - one from v; to v, and one
from v, to v; . Each of these paths uses

vertices from {v,,V5,...,Vi_1}-

Pi j(k)
d 9=d, (D, (kD

32

Floyd’s Algorithm
= Recurrence equation:
W(v;,V;) if k=0
min(d® Y, d%Y +d®Y) i k=1

= Length of shortest path from v; to v; =
d; (. Solution set = a matrix.

di(,kj) :%

33

iFond’s Algorithm

How to parallelize? |

procedure FLOYD_ALL_PAIRS_SP(A4)
begin 3
DO = 4; @(n)
for k :=1ton do)
for i — 1 to 1 do Also works /n place

for j :=1ton do

k) . - (k—1) (k—1) (k—1)\.
dz'.j ESRitlL (di.j ;g "'dk.j)

end FLOYD_ALL_PAIRS_SP

N

Algorithm 10.3 Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs
shortest paths of the graph G = (V, E') with adjacency matrix 4.

34

iParaIIeI Formulation

= 2-D block mapping:
= Each of the p processes has a sub-matrix
(n/vp)? and computes its DK,
= Processes need access to the corresponding k
row and column of D),

= kth iteration: Each processes containing part of
the kth row sends it to the other processes in
the same column. Same for column broadcast

on rows.

35

(a)

d
<

(f—l)'j};—i-ls(j—l)-j};—i—l

(b)

n/vp

Figure 10.7 (a) Matrix D™ distributed by 2-D block mapping into ./p x ,/p subblocks, and (b)
the subblock of D) assigned to process P; ;.

36

Communication

k column k column
(k—1) | bBD—t 11 i
L e
 TOW
(k—1) : :
Gy D AT D T |
> e d](k)
______________]

(a) (b)

Figure 10.8 (a) Communication patterns used in the 2-D block mapping. When computing dz.(""].),
information must be sent to the highlighted process from two other processes along the same row
and column. (b) The row and column of ,/p processes that contain the k™ row and column send

them along process columns and rows.

37

Parallel Algorithm

procedure FLOYD_2DBLOCK (D)
begin
for k :=1ton do
begin
each process P ; that has a segment of the & row of D*~1):
broadcasts it to the Py ; processes;
each process P ; that has a segment of the k™ column of D*~1;
broadcasts it to the P; . processes;
each process waits to receive the needed segments;

each process P ; computes its part of the D® matrix;
end

0. end FLOYD_2DBLOCK

Sl

S

= YO % N

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. P, ; denotes all the
processes in the ;" column, and P; .. denotes all the processes in the i row. The matrix D is
the adjacency matrix.

38

computation communication

iAnaIysis

ey ey 2
I'p= © <i> + 6 (n___ lmgp) .
P NG

= E=1/(1+0((v/p logp)/n).

= Cost optimal if up to O((r1/logn)?)
processes.

= Possible to improve: pipelined 2-D block
mapping: No broadcast, send to
neighbour. Communication: ©(n), up to
O(n?4) processes & cost optimal.

39

All-Pairs Shortest Paths: Matrix
iMuItipIication Based Algorithm

= Multiplication of the weighted adjacency
matrix with itself — except that we replace
multiplications by additions, and additions
by minimizations.

= The result is a matrix that contains
shortest paths of length 2 between any
pair of nodes.

s It follows that A7 contains all shortest
paths.

40

38888088 8¢°
2848488873 0w
28484808808 w
38888°~83

288488808 w
38888°o+8m

38888888¢°
288488388 ow

s e 00 00 00\ Serial algorithm not
Lo optimal but we can
o0 00 2 00 O

oo zoese |, Use n3/_logn processes
© 0 23 2 to run in O(log?n).

1 oo 0 1 o oo oo o0 o0 I o0 U I OO0
oo oo oo 0 oc cooooooooc oo oo 0 oo
fx;*:x;;fxll]) ocoooocooococoo 1 0
53555\ /ﬂ23453565\
4 1 3 4 3 oo Docooo 4 1 3 4 3
2 00 3 4 o aooo 01 2 00 3 4
3 oo 2 3 o¢) occoooo 0 3 o 2 3 o
0 o0 oc 00 oC _4.5: oc oo oo o0 0 oo oo oo o0
3 0 2 3 2 ccooocox 3 0 2 3 2
1 oo 0 1 o¢ occooocooo 1 oo 0 1 oo
oo oo oo 0 oo oc oo oo wocoooo 0 oo
*x*x;*x;ll]/ \'}cx'}cxﬁcxﬁcll]/

iTransitive Closure

= Find out if any two vertices are connected.
= G*=(V,E*) where E*={(v,v;)|3 a path
from v; to v, in G}.

Ialb:

o O

42

iTransitive Closure

s Start with D=(a, ; or o).

')

= Apply one all-pairs shortest paths
algorithm.

= Solution:

A j =9

(

.

oo |If di,j — o0

1 if d,, >00ri=]

43

Connected Components

= Connected components of G=(V,E) are the
maximal disjoint sets C,,...,C, s.t. V=UC,
and u,v e C iff u reachable from v and v
reachable from u.

0‘9 0‘0 (8)

Figure 10.10 A graph with three connected components: {1, 2, 3, 4}, {5, 6, 7}, and {8, 9}.

iDFS Based Algorithm

= DFS traversal of the graph — forest of
(DFS) spanning trees.

45

(a)

(b)

Figure 10.11 Part (b) is a depth-first forest obtained from depth-first traversal of the graph in part
(). Each of these trees is a connected component of the graph in part (a).

iParaIIeI Formulation

s Partition G into p sub-graphs. P; has
Gi=(VlEi)'
= Each P, computes the spanning forest of G..
= Merge the forests pair-wise.

= Each merge possible in ©(n).
= Not described in the book — out of scope.

= Find if an edge of A has its vertices in B:
= No for all — union of 2 disjoint sets.
= yes for one — no union.

47

_.
W)
W
N
W
o)
-

e gl
1:0111000i
2110100 0 0
341 1011 0 0f!
4 1701 01 _0__0"*I
50/0 01 1 0 0 0f
6 1o 00000 1]
710 0000 1 0ff
b e e e e e —— — =l

(a) (b)

Partition the adjacency matrix.
1-D partitioning in p stripes of n/p
consecutive rows.

Processor 1

Processor 2

s

cceeemmseessssssssssennea,
- -

-

- --

iAnaIysis

local computation

i — forest merging

n- e —

I'p = © (—) + O(nlogp).
P

= E=1/(1+0((p logp)/n).
= Up to O(n/logn) to be cost-optimal.
s Performance similar to Prim’s algorithm.

50

