

Sorting (Chapter 9)

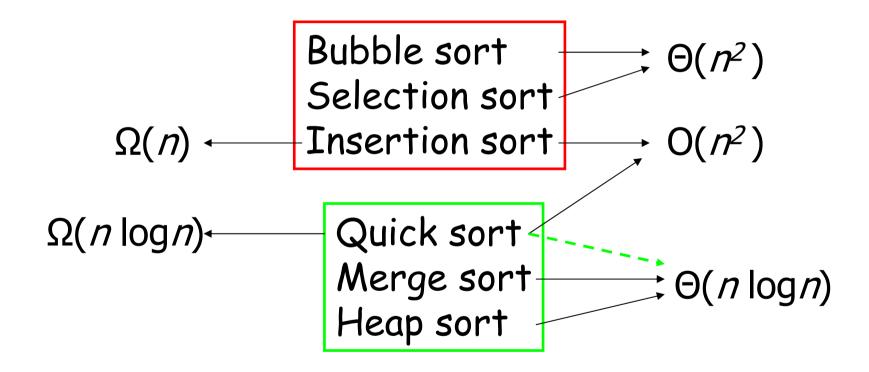
Alexandre David B2-206

Problem

Arrange an unordered collection of elements into monotonically increasing (or decreasing) order.

Let
$$S = \langle a_1, a_2, ..., a_n \rangle$$
.
Sort S into $S' = \langle a_1', a_2', ..., a_n' \rangle$ such that $a_i' \le a_j'$ for $1 \le i \le j \le n$ and S' is a permutation of S .

Recall on Comparison Based Sorting Algorithms



Characteristics of Sorting Algorithms

- In-place sorting: No need for additional memory (or only constant size).
- Stable sorting: Ordered elements keep their original relative position.
- Internal sorting: Elements fit in process memory.
- External sorting: Elements are on auxiliary storage.

Fundamental Distinction

- Comparison based sorting:
 - Compare-exchange of pairs of elements.
 - Lower bound is $\Omega(n \log n)$ (proof based on decision trees).
 - Merge & heap-sort are optimal.
- Non-comparison based sorting:
 - Use information on the element to sort.
 - Lower bound is $\Omega(n)$.
 - Counting & radix-sort are optimal.

- Where to store input & output?
 - One process or distributed?
 - Enumeration of processes used to distribute output.
- How to compare?
 - How many elements per process?
 - As many processes as element ⇒ poor performance because of inter-process communication.

Parallel Compare-Exchange

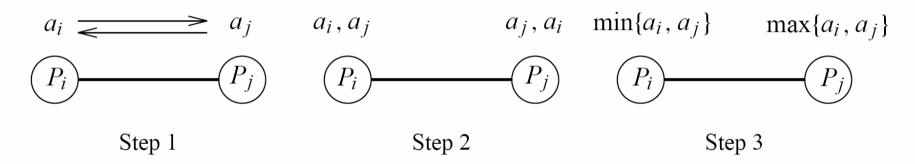
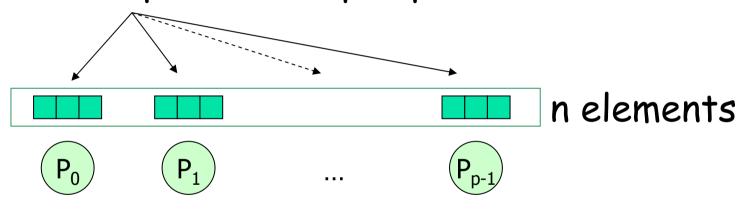


Figure 9.1 A parallel compare-exchange operation. Processes P_i and P_j send their elements to each other. Process P_i keeps $\min\{a_i, a_j\}$, and P_j keeps $\max\{a_i, a_j\}$.

Communication cost: $t_s + t_w$. Comparison cost much cheaper \Rightarrow communication time dominates.

Blocks of Elements Per Process

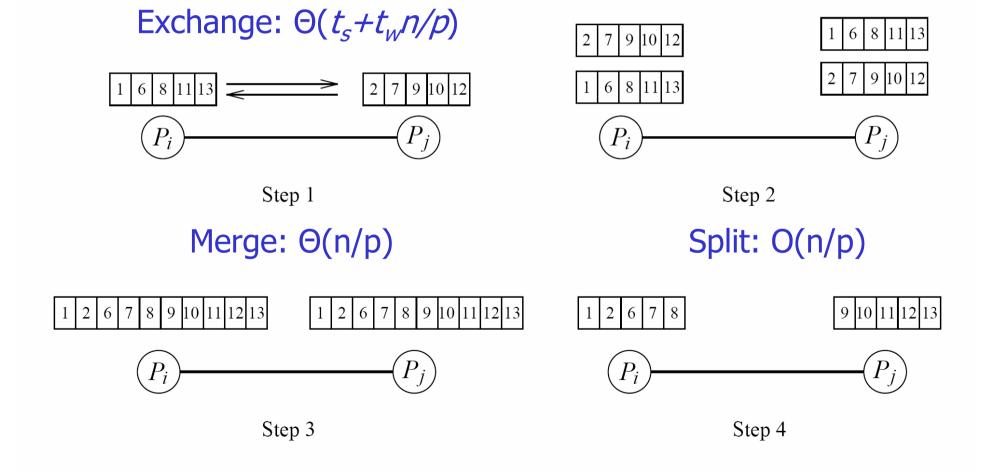
n/p elements per process



Blocks:
$$A_0 \le A_1 \le \dots \le A_{p-1}$$

Compare-Split

For large blocks: Θ(n/p)



Sorting Networks

- Mostly of theoretical interest.
- Key idea: Perform many comparisons in parallel.
- Key elements:
 - Comparators: 2 inputs, 2 outputs.
 - Network architecture: Comparators arranged in columns, each performing a permutation.
 - Speed proportional to the depth.

Comparators

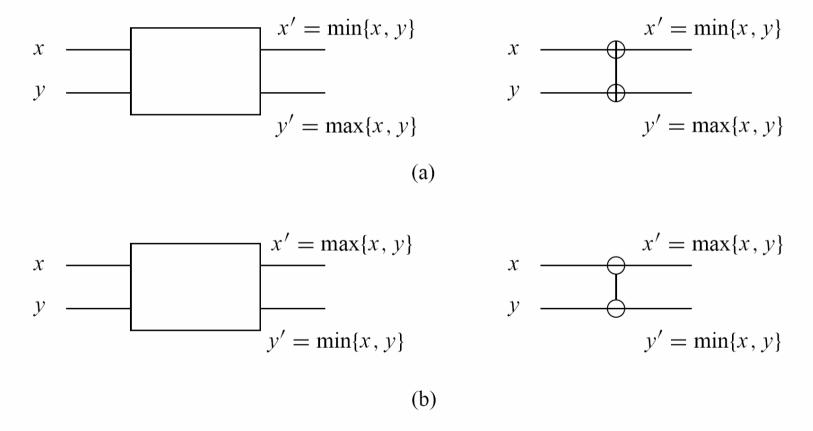


Figure 9.3 A schematic representation of comparators: (a) an increasing comparator, and (b) a decreasing comparator.

Sorting Networks

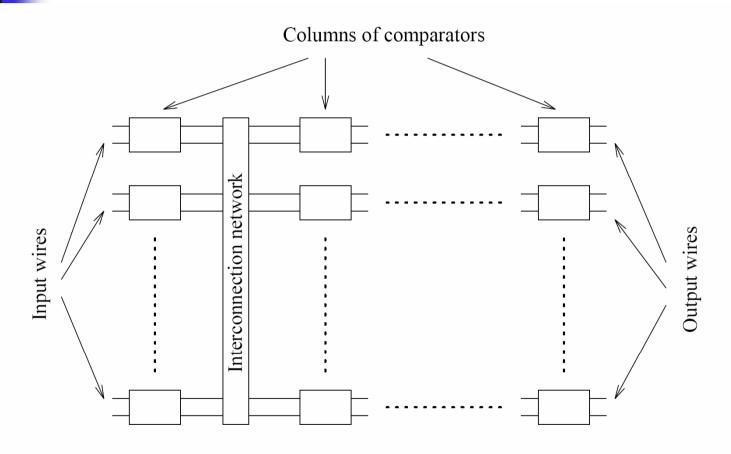


Figure 9.4 A typical sorting network. Every sorting network is made up of a series of columns, and each column contains a number of comparators connected in parallel.

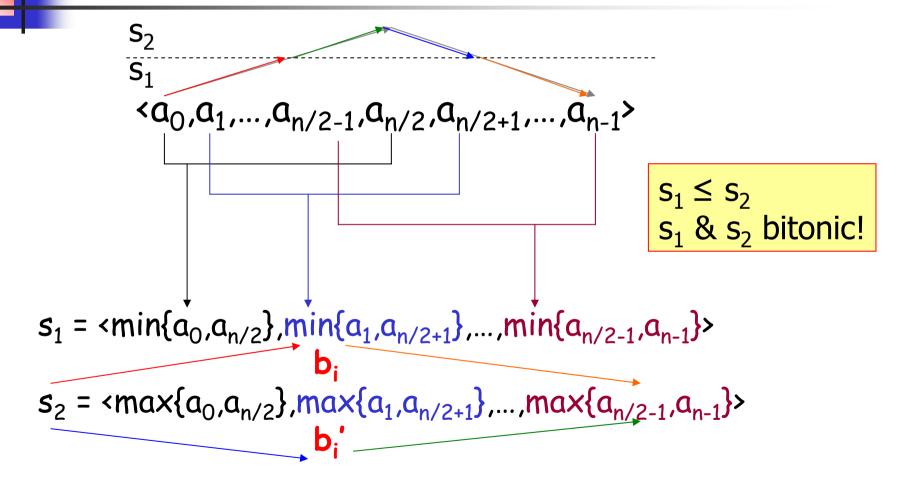
Bitonic Sequence

Definition

- A bitonic sequence is a sequence of elements $\langle a_0, a_1, ..., a_n \rangle$ s.t.
- 1. $\exists i, 0 \le i \le n-1 \text{ s.t. } \langle a_0,...,a_i \rangle$ is monotonically increasing and $\langle a_{i+1},...,a_{n-1} \rangle$ is monotonically decreasing,
- 2. or there is a cyclic shift of indices so that 1) is satisfied.

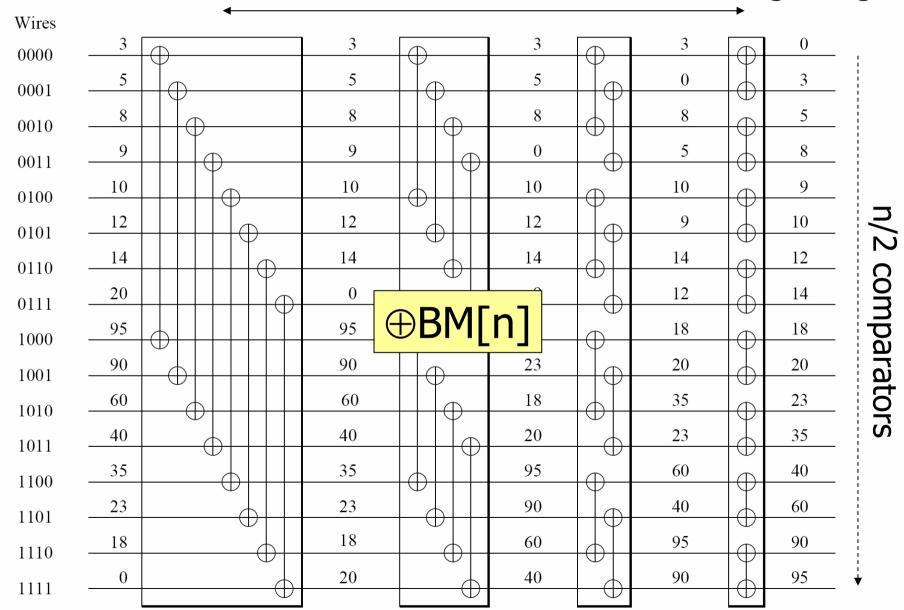
- Rearrange a bitonic sequence to be sorted.
- Divide & conquer type of algorithm (similar to quicksort) using bitonic splits.
 - Sorting a bitonic sequence using bitonic splits
 bitonic merge.
 - But we need a bitonic sequence...

Bitonic Split

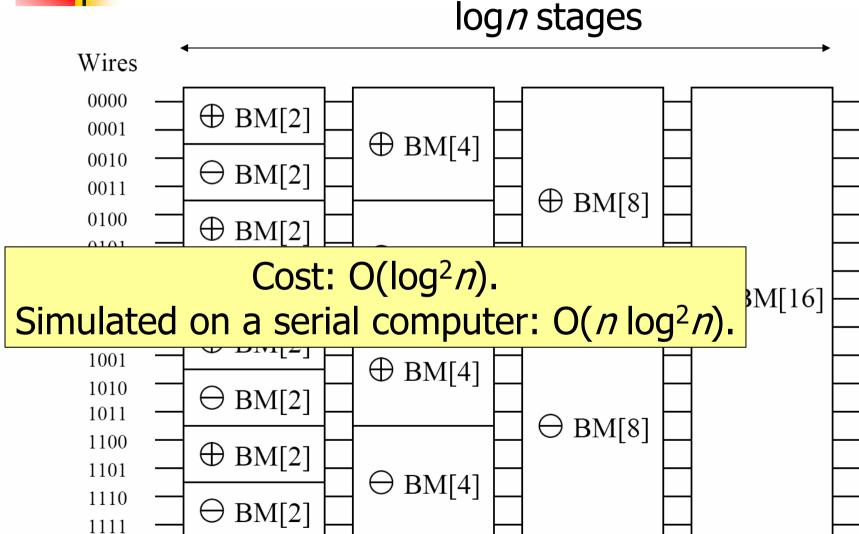


Bitonic Merging Network

log*n* stages



- Use the bitonic network to merge bitonic sequences of increasing length... starting from 2, etc.
- Bitonic network is a component.



Mapping to Hypercubes & Mesh

Idea

- Communication intensive, so special care for the mapping.
- How are the input wires paired?
 - Pairs have their labels differing by only one bit
 ⇒ mapping to hypercube straightforward.
 - For a But not efficient & not scalable solutions the sequential algorithm e T_P= cis suboptimal for 1 element/process.
 - Block of elements: sort locally $(n/p \log n/p)$ & use bitonic merge \Rightarrow cost optimal.

21-04-2006

Bubble Sort

```
procedure BUBBLE_SORT(n)
begin
  for i := n-1 downto 1 do
    for j := 1 to i do
        compare_exchange(a<sub>j</sub>,a<sub>j+1</sub>);
end
```

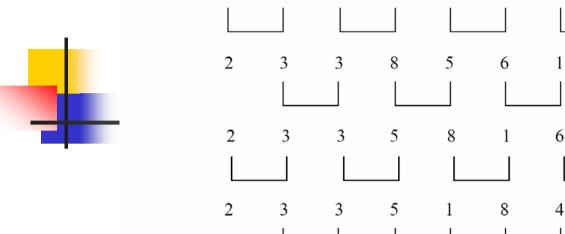
$$\Theta(n^2)$$

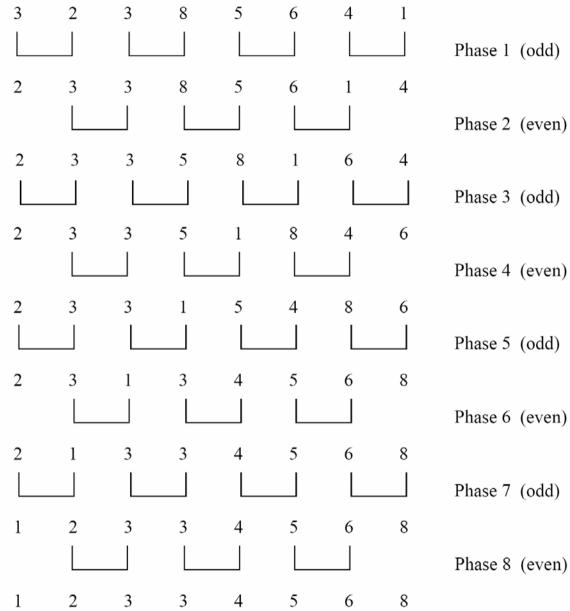
 Difficult to parallelize as it is because it is inherently sequential.

Odd-Even Transposition Sort

```
procedure ODD-EVEN(n)
2.
     begin
3
         for i := 1 to n do
4.
         begin
5.
             if i is odd then
                                                           (a_1,a_2),(a_3,a_4)...
                for j := 0 to n/2 - 1 do
6.
                    compare-exchange(a_{2j+1}, a_{2j+2});
8
             if i is even then
                                                           (a_2,a_3),(a_4,a_5)...
                for j := 1 to n/2 - 1 do
9.
                    compare-exchange(a_{2j}, a_{2j+1});
10
         end for
11.
12.
      end ODD-EVEN
```

Algorithm 9.3 Sequential odd-even transposition sort algorithm.





Unsorted

Odd-Even Transposition Sort

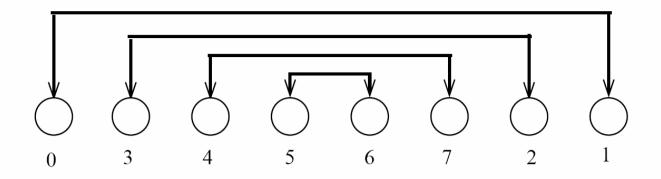
- Easy to parallelize!
 - \bullet $\Theta(n)$ if 1 process/element.
 - Not cost optimal but use fewer processes, an optimal local sort, and compare-splits:

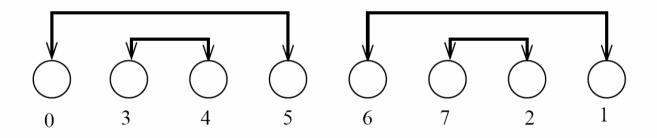
$$T_{P} = \Theta\left(\frac{n}{p}\log\frac{n}{p}\right) + \Theta(n) + \Theta(n)$$

Cost optimal for $p = O(\log n)$ but not scalable (few processes).

Improvement: Shellsort

- 2 phases:
 - Move elements on longer distances.
 - Odd-even transposition but stop when no change.
- Idea: Put quickly elements near their final position to reduce the number of iterations of odd-even transposition.





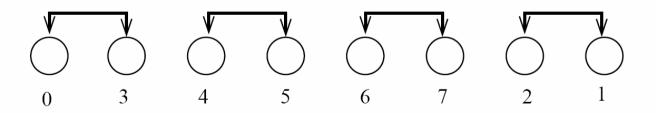
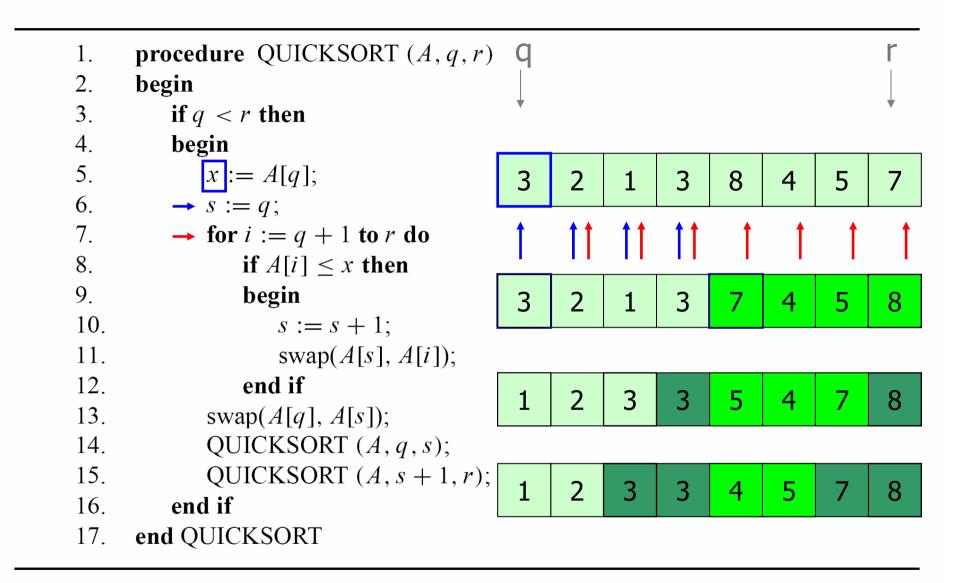


Figure 9.14 An example of the first phase of parallel shellsort on an eight-process array.

Quicksort

- Average complexity: O(n logn).
 - But very efficient in practice.
 - Average "robust".
 - Low overhead and very simple.
- Divide & conquer algorithm:
 - Partition A[q..r] into A[q..s] \leq A[s+1..r].
 - Recursively sort sub-arrays.
 - Subtlety: How to partition?



Algorithm 9.5 The sequential quicksort algorithm.

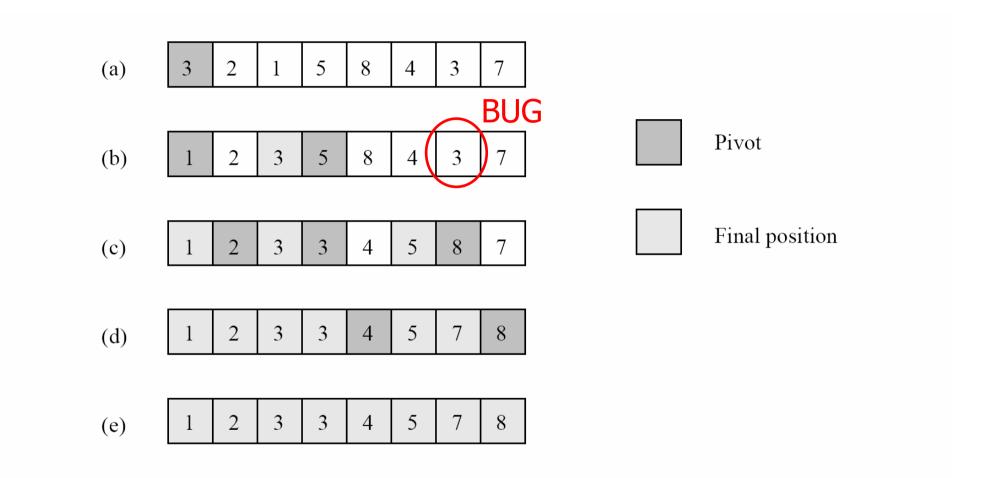


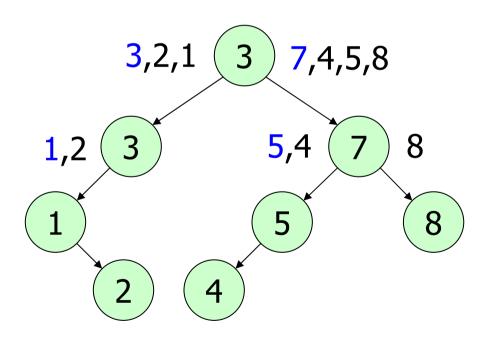
Figure 9.15 Example of the quicksort algorithm sorting a sequence of size n = 8.

Parallel Quicksort

- Simple version:
 - Recursive decomposition with one process per recursive call.
 - Not cost optimal: Lower bound = n (initial partitioning).
 - Best we can do: Use O(log n) processes.
 - Need to parallelize the partitioning step.

Parallel Quicksort for CRCW PRAM

See execution of quicksort as constructing a binary tree.



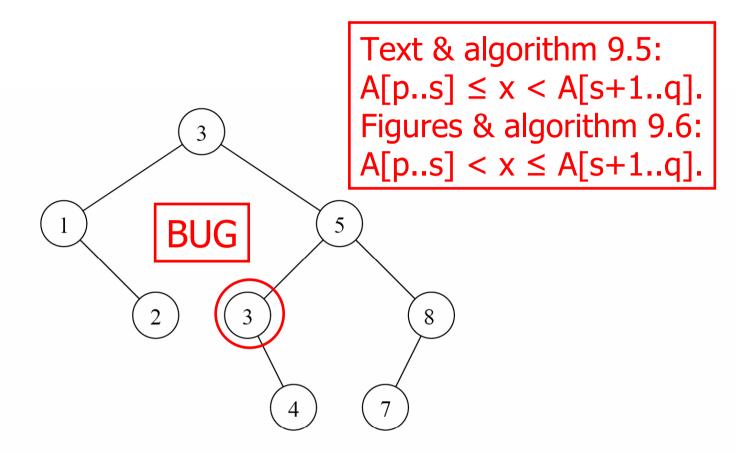
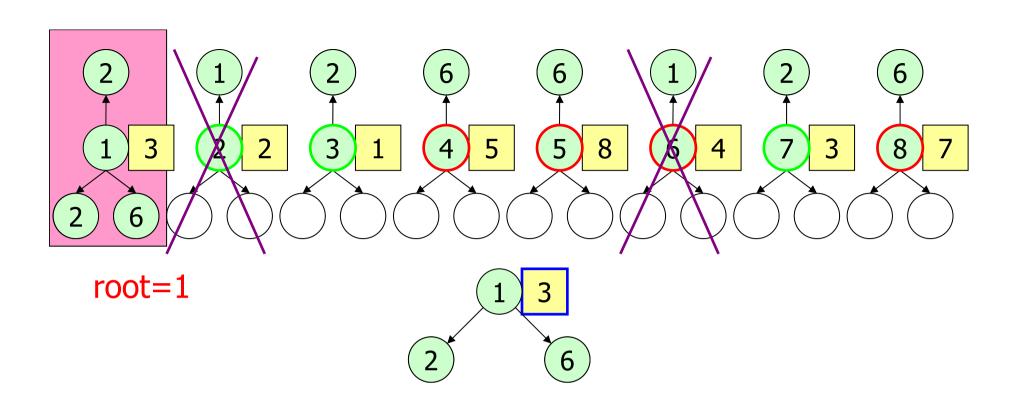
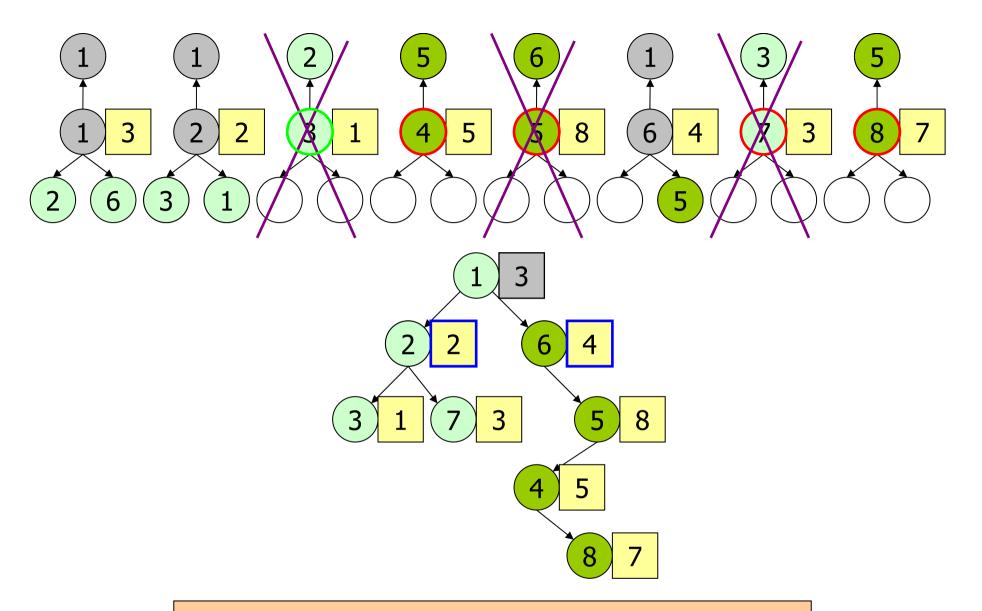


Figure 9.16 A binary tree generated by the execution of the quicksort algorithm. Each level of the tree represents a different array-partitioning iteration. If pivot selection is optimal, then the height of the tree is $\Theta(\log n)$, which is also the number of iterations.

```
procedure BUILD_TREE (A[1 ... n])
2.
      begin
3.
         for each process i do
         begin
4.
            root := i; only one succeeds
5.
6.
            parent_i := root;
7.
             leftchild[i] := rightchild[i] := n + 1;
8.
         end for
9.
         repeat for each process i \neq root do
10.
         begin
            if (A[i] \land A[i] \leq A[parent_i] ent_i) then
11.
12.
             begin
                leftchild[parent_i] := i;
13.
                if i = leftchild[parent_i] then exit
14.
15.
                else parent_i := leftchild[parent_i];
             end for
16.
17.
             else
18.
             begin
                rightchild[parent_i] := i;
19.
                if i = rightchild[parent_i] then exit
20.
21.
                else parent_i := rightchild[parent_i];
22.
             end else
23.
         end repeat
24.
      end BUILD_TREE
```

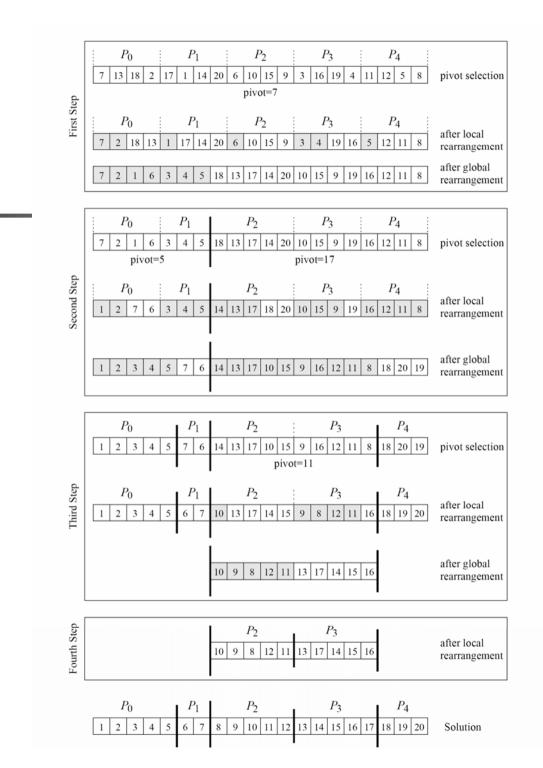


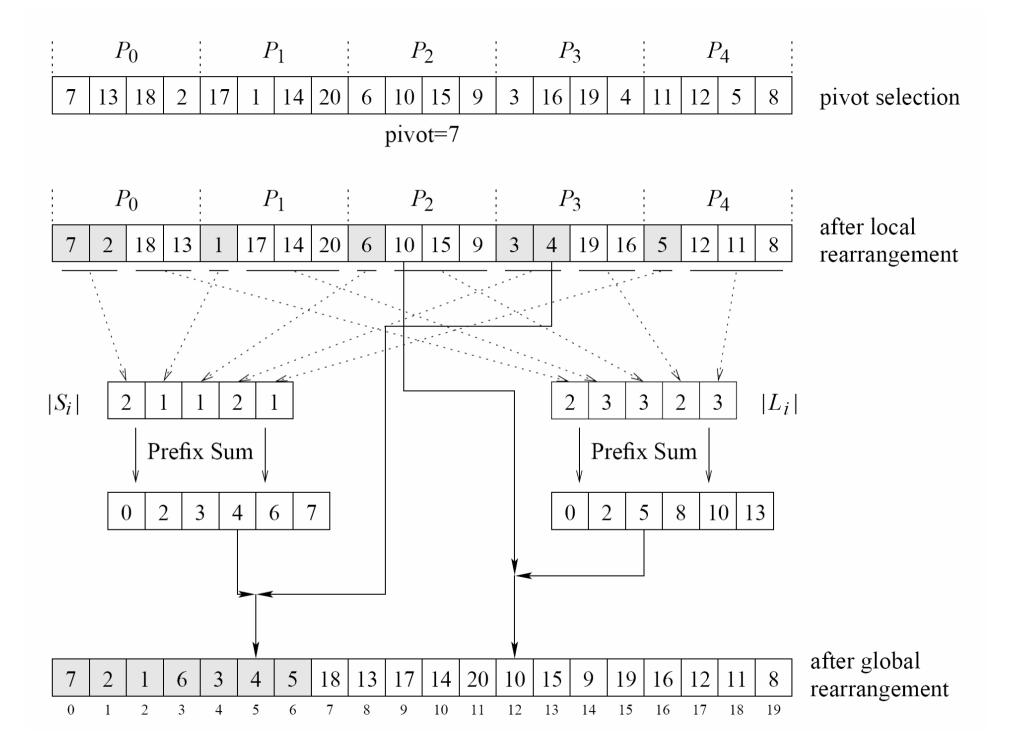


Each step: $\Theta(1)$. Average height: $\Theta(\log n)$. This is cost-optimal – but it is only a model.

Parallel Quicksort – Shared Address (Realistic)

- Same idea but remove contention:
 - Choose the pivot & broadcast it.
 - Each process rearranges its block of elements locally.
 - Global rearrangement of the blocks.
 - When the blocks reach a certain size, local sort is used.





- Scalability determined by time to broadcast the pivot & compute the prefix-sums.
- Cost optimal.

$$T_P = \Theta\left(\frac{n}{p}\log\frac{n}{p}\right) + \Theta\left(\frac{n}{p}\log p\right) + \Theta(\log^2 p). \tag{4}$$

MPI Formulation of Quicksort

- Arrays must be explicitly distributed.
- Two phases:
 - Local partition smaller/larger than pivot.
 - Determine who will sort the sub-arrays.
 - And send the sub-arrays to the right process.

Final Word

- Pivot selection is very important.
- Affects performance.
- Bad pivot means idle processes.