

The elements to sort (actually used for comparisons) are also called the keys.

You should know these complexities from a previous course on algorithms.

Characteristics of Sorting

 - Algorithms- In-place sorting: No need for additional memory (or only constant size).
- Stable sorting: Ordered elements keep their original relative position.
- Internal sorting: Elements fit in process memory.
- External sorting: Elements are on auxiliary storage.

We assume internal sorting is possible.

LFundamental Distinction

- Comparison based sorting:
- Compare-exchange of pairs of elements.
- Lower bound is $\boldsymbol{\Omega}(\boldsymbol{n} \boldsymbol{\operatorname { l o g } \boldsymbol { n }}$) (proof based on decision trees).
- Merge \& heap-sort are optimal.
- Non-comparison based sorting:
- Use information on the element to sort.
- Lower bound is $\boldsymbol{\Omega}(\mathbf{n})$.
- Counting \& radix-sort are optimal.

We assume comparison based sorting is used.

Issues in Parallel Sorting

- Where to store input \& output?
- One process or distributed?
- Enumeration of processes used to distribute output.
- How to compare?
- How many elements per process?
- As many processes as element \Rightarrow poor performance because of inter-process communication.

Parallel Compare-Exchange
 Step 1

 Step 3

Figure 9.1 A parallel compare-exchange operation. Processes P_{i} and P_{j} send their elements to each other. Process P_{i} keeps $\min \left\{a_{i}, a_{j}\right\}$, and P_{j} keeps max $\left\{a_{i}, a_{j}\right\}$.

Communication cost: $\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{w}}$.
Comparison cost much cheaper \Rightarrow communication time dominates.

\| Compare-Split For large blocks: $\Theta(n / p)$	
Exchange: $\Theta\left(t_{s}+t_{w} n / p\right)$	
Step 1	Step 2
Merge: $\Theta(n / p)$	Split: O(n/p)
$P_{i}-P_{j}$	$P_{i}-P_{j}$
Step 3	Step 4

| Sorting Networks

- Mostly of theoretical interest.
- Key idea: Perform many comparisons in parallel.
- Key elements:
- Comparators: 2 inputs, 2 outputs.
- Network architecture: Comparators arranged in columns, each performing a permutation.
- Speed proportional to the depth.

Comparators

(a)

(b)

Figure 9.3 A schematic representation of comparators: (a) an increasing comparator, and (b) a decreasing comparator.

Sorting Networks

Figure 9.4 A typical sorting network. Every sorting network is made up of a series of columns, and each column contains a number of comparators connected in parallel.

| Bitonic Sequence

	Definition
A bitonic sequence is a sequence of	
elements $<a_{0}, a_{1}, \ldots, a_{n}>$ s.t.	
1. $\exists i, 0 \leq i \leq n-1$ s.t. $<a_{0}, \ldots, a_{i}>$ is	
monotonically increasing and	
<a $a_{i+1, \ldots,}, a_{n-1}>$ is monotonically	
decreasing,	
2. or there is a cyclic shift of indices	
so that 1) is satisfied.	

Example: <1,2,4,7,6,0> \& <8,9,2,1,0,4> are bitonic sequences.

| Bitonic Sort

- Rearrange a bitonic sequence to be sorted.
- Divide \& conquer type of algorithm (similar to quicksort) using bitonic splits.
- Sorting a bitonic sequence using bitonic splits = bitonic merge.
- But we need a bitonic sequence...

And in fact the procedure works even if the original sequence needs a cyclic shift to look like this particular case.

Cost: $\Theta(\log n)$ obviously.

| Bitonic Sort

- Use the bitonic network to merge bitonic sequences of increasing length... starting from 2, etc.
- Bitonic network is a component.

Not cost optimal compared to the optimal serial algorithm.

Mapping to Hypercubes \& Mesh

``` - Idea
- Communication intensive, so special care for the mapping.
- How are the input wires paired?
- Pairs have their labels differing by only one bit \(\Rightarrow\) mannina to hynercube straiahtforward.
- For But not efficient \& not scalable solut because the sequential algorithm \(\mathrm{T}_{\mathrm{p}}=\) is suboptimal.
- Block of elements: sort locally \((n / p \log n / p) \&\) use bitonic merge \(\Rightarrow\) cost optimal.

Hypercube: Neighbors differ with each other by one bit.

\section*{LBubble Sort}
procedure BUBBLE_SORT(n) begin
for \(\mathrm{i}:=\mathrm{n}-1\) downto 1 do for \(\mathrm{j}:=1\) to i do compare_exchange \(\left(a_{j}, a_{j+1}\right)\);
end
- Difficult to parallelize as it is because it is inherently sequential.

It is difficult to sort \(n\) elements in time logn using \(n\) processes (cost optimal w.r.t. the best serial algorithm in \(n \log n\) ) but it is easy to parallelize other (less efficient) algorithms.

\section*{Odd-Even Transposition Sort}
```

procedure ODD-EVEN(n)
begin
for }i:=1\mathrm{ to }n\mathrm{ do
\Theta(\mp@subsup{n}{}{2})
begin
If i is odd then
for }j:=0\mathrm{ to }n/2-1 d
(a, a},\mp@subsup{a}{2}{}),(\mp@subsup{a}{3}{},\mp@subsup{a}{4}{})
compare-exchange(a
if i}\mathrm{ is even then
for j:=1 to }n/2-1 d
(a, a, a),(a, (a,)...
compare-exchange(}\mp@subsup{a}{2j}{},\mp@subsup{a}{2j+1}{})\mathrm{ ;
end for
end ODD-EVEN

```

Algorithm 9.3 Sequential odd-even transposition sort algorithm.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \\
\hline & 3 & 2 & 3 & 8 & 5 & 6 & 4 & 1 & & \\
\hline & & & & & & & & ] & Phase 1 (odd) & \\
\hline & 2 & 3 & 3 & 8 & 5 & 6 & 1 & 4 & & \\
\hline & & \[
1
\] & & & & & & & Phase 2 (even) & \\
\hline & 2 & 3 & 3 & 5 & 8 & 1 & 6 & 4 & & \\
\hline & & & & & & & & & Phase 3 (odd) & \\
\hline & 2 & 3 & 3 & 5 & 1 & 8 & 4 & 6 & & \\
\hline & & & & & & & & & Phase 4 (even) & \\
\hline & 2 & 3 & 3 & 1 & 5 & 4 & 8 & 6 & & \\
\hline & & & & & & & & \[
\downarrow
\] & Phase 5 (odd) & \\
\hline & 2 & 3 & 1 & 3 & 4 & 5 & 6 & 8 & & \\
\hline & & & & & & & & & Phase 6 (even) & \\
\hline & 2 & 1 & 3 & 3 & 4 & 5 & 6 & 8 & & \\
\hline & & & & & & & & & Phase 7 (odd) & \\
\hline & 1 & 2 & 3 & 3 & 4 & 5 & 6 & 8 & & \\
\hline & & & & & & & & & Phase 8 (even) & \\
\hline & 1 & 2 & 3 & 3 & 4 & 5 & 6 & 8 & & \\
\hline 21-04-2006 & & & & & & & & & & 22 \\
\hline
\end{tabular}

\section*{Odd-Even Transposition Sort}
- Easy to parallelize!
- \(\Theta(n)\) if 1 process/element.
- Not cost optimal but use fewer processes, an optimal local sort, and compare-splits:
\(T_{P}=\Theta\left(\frac{n}{p} \log \frac{n}{p}\right)+\Theta(n)+\Theta(n)\)
local sor \(\begin{aligned} & \text { Cost optimal for } p=O(\log n) \\ & \text { but not scalable (few processes). tion }\end{aligned}\)

Write speedup \& efficiency to find the bound on \(p\) but you can also see it with \(T_{p}\).

\section*{Improvement: Shellsort}
- 2 phases:
- Move elements on longer distances.
- Odd-even transposition but stop when no change.
- Idea: Put quickly elements near their final position to reduce the number of iterations of odd-even transposition.


Figure 9.14 An example of the first phase of parallel shellsort on an eight-process array.

\section*{Quicksort}
- Average complexity: \(\mathrm{O}(n \log n)\).
- But very efficient in practice.
- Average "robust".
- Low overhead and very simple.
- Divide \& conquer algorithm:
- Partition \(A[q . . r]\) into \(A[q . . s] \leq A[s+1 . . r]\).
- Recursively sort sub-arrays.
- Subtlety: How to partition?


Algorithm 9.5 The sequential quicksort algorithm.

Hoare partitioning is better. Check in your algorithm course.
(a)

(b)

(c)

(d)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 3 & 4 & 5 & 7 & 8 \\
\hline
\end{tabular}
(e)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 3 & 4 & 5 & 7 & 8 \\
\hline
\end{tabular}

Figure 9.15 Example of the quicksort algorithm sorting a sequence of size \(n=8\).

\section*{- Parallel Quicksort}
- Simple version:
- Recursive decomposition with one process per recursive call.
- Not cost optimal: Lower bound \(=n\) (initial partitioning).
- Best we can do: Use O(logn) processes.
- Need to parallelize the partitioning step.

\section*{Parallel Quicksort for CRCW \(\perp\) PRAM \\ - See execution of quicksort as constructing a binary tree.}



Figure 9.16 A binary tree generated by the execution of the quicksort algorithm. Each level of the tree represents a different array-partitioning iteration. If pivot selection is optimal, then the height of the tree is \(\Theta(\log n)\), which is also the number of iterations.
```

procedure BUILD_TREE ($A[1 \ldots n]$)
begin
for each process i do
begin
root: $=i$; only one succeeds
parent $_{i}:=$ root;
lefichild $[i]:=$ rightchild $[i]:=n+1$;
end for
repeat for each process $i \neq$ root do
begin
if $\left(A[i) \quad \mathrm{A}[\mathrm{i}] \leq \mathrm{A}\left[\right.\right.$ parent $\left.{ }_{\mathrm{i}}\right]$
begin
leftchild $\left[\right.$ parent $\left._{i}\right]:=i$;
if $i={\text { lefichild }\left[\text { parent }_{i} \text {] then exit }\right.}^{2}$
else parent $_{i}:={\text { leftchild }\left[\text { parent }_{i}\right]}$;
end for
else
begin
rightchild $\left[\right.$ parent $\left._{i}\right]:=i$;
if $i=$ rightchild $\left[\right.$ parent $\left._{i}\right]$ then exit
else parent $_{i}:=$ rightchild $\left[\right.$ parent $\left._{i}\right]$;
end else
end repeat
end BUILD_TREE

```

This algorithm does not correspond exactly to the serial version. Time for partitioning: \(\mathrm{O}(1)\).
Alexandre David, MVP'06


\section*{Parallel Quicksort - Shared \(\downarrow\) Address (Realistic)}
- Same idea but remove contention:
- Choose the pivot \& broadcast it.
- Each process rearranges its block of elements locally.
- Global rearrangement of the blocks.
- When the blocks reach a certain size, local sort is used.



\section*{- Cost}
- Scalability determined by time to broadcast the pivot \& compute the prefix-sums.
- Cost optimal.
\[
\begin{equation*}
T_{P}=\overbrace{\Theta\left(\frac{n}{p} \log \frac{n}{p}\right)}^{\text {local sort }}+\overbrace{\Theta\left(\frac{n}{p} \log p\right)+\Theta\left(\log ^{2} p\right)}^{\text {aray splits }} . \tag{4}
\end{equation*}
\]

\section*{MPI Formulation of Quicksort}
- Arrays must be explicitly distributed.
- Two phases:
- Local partition smaller/larger than pivot.
- Determine who will sort the sub-arrays.
- And send the sub-arrays to the right process.

\section*{LFinal Word}
- Pivot selection is very important.
- Affects performance.
- Bad pivot means idle processes.```

