Dense Matrix Algorithms (Chapter 8)

Alexandre David
B2-206

Dense Matrix Algorithm

- Dense or full matrices: few known zeros.
- Other algorithms for sparse matrix.
- Square matrices for pedagogical purposes only - can be generalized.
- Natural to have data decomposition.
- 3.2.2 input/output/intermediate data.
- 3.4.1 mapping schemes based on data partitioning.

Today

- Matrix*Vector
- Matrix*Matrix
- Solving systems of linear equations.

Matrix*Vector - Recall

$$
y_{i}=\sum_{k=1}^{n} a_{i k} x_{k}
$$

Serial algorithm: n^{2} multiplications and addition.

$$
W=n^{2}
$$

Matrix*Matrix - Recall

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Serial algorithm: n^{3} multiplications and addition.

$$
W=n^{3}
$$

Matrix*Vector - Serial Algorithm

$$
y_{i}=\sum_{k=1}^{n} a_{i k} x_{k} \longrightarrow \begin{gathered}
\text { procedure } M A T _V e c(A, x, y) \\
\text { for } i:=0 \text { to } \mathrm{n}-1 \text { do } \\
y[i]:=0 \\
\text { for } \mathrm{k}:=0 \text { to } \mathrm{n}-1 \text { do } \\
\mathrm{y}[\mathrm{i}]:=\mathrm{y}[\mathrm{i}]+\mathrm{A}[\mathrm{i}, \mathrm{k}] * \mathrm{x}[\mathrm{k}] \\
\text { done } \\
\text { done } \\
\text { endproc }
\end{gathered}
$$

How to parallelize?

Matrix*Matrix - Serial Algorithm

$$
\begin{aligned}
& \text { procedure MAT_MULT(A,B,C) } \\
& \text { for } i:=0 \text { to } n-1 \text { do } \\
& \text { for } j:=0 \text { to } n-1 \text { do } \\
& C[i, j]:=0 \\
& \text { for } k:=0 \text { to } n-1 \text { do } \\
& C[i, j]:=C[i, j]+A[i, k] * B[k, j] \\
& \text { done } \\
& \text { done } \\
& \text { done } \\
& \text { endproc }
\end{aligned}
$$

How to parallelize?

Matrix*Vector - Row-wise 1-D Partitioning

- Initial distribution:
- Each process has a row of the $n^{*} n$ matrix.
- Each process has an element of the $n^{* 1}$ vector.
- Each process is responsible for computing one element of the result.

Matrix*Vector - 1-D

But every process needs the entire vector \Rightarrow all-to-all broadcast.

LAll-to-All Broadcast

 \square

Parallel Computation

$$
y_{i}=\sum_{k=1}^{n} a_{i k} x_{k} \quad \text { in parallel on the } n \text { processes. }
$$

Example Matrix*Vector (Program 6.4)

Partition on rows.

Allgather (All-to-all broadcast)

Analysis

- All-to-all broadcast \& multiplications in $\theta(\mathrm{n})$.
- For n processes $W=n^{2}=n T_{\rho}$.
\Rightarrow The algorithm is cost-optimal.
A parallel system is cost-optimal iff

$$
p T_{\rho}=\theta(W) .
$$

Performance Metrics

- Efficiency $E=S / p$.
- Measure time spent in doing useful work.
- Previous sum example: $E=\Theta(1 / \log n)$.
- Cost $C=p T_{p}$.
- A.k.a. work or processor-time product.
- Note: $E=T_{S} / C$.
- Cost optimal if E is a constant.

Using Fewer Processes

- Brent's scheduling principle: It's possible.
- Using p processes:
- n / p rows per process.
- Communication time $=t_{s} \log p+t_{w}(n / p)(p-1)$ $\sim t_{s} \log p+t_{w} n=\Theta(\mathrm{n})$.
- Computation: $n * n / p$.

$$
\Rightarrow p T_{p}=\Theta\left(n^{2}\right)=W \Rightarrow \text { It is cost optimal. }
$$

Scalability - Recall

- Efficiency increases with the size of the problem.
- Efficiency decreases with the number of processors.
- Scalability measures the ability to increase speedup in function of p.

Isoefficiency Function

- For scalable systems efficiency can be kept constant if $\mathrm{T}_{0} / \mathrm{W}$ is kept constant.

For a target E	$E=\frac{1}{1+T_{o}(W, p) / W}$,
Keep this constant $\frac{T_{o}(W, p)}{W}$	$=\frac{1-E}{E}$,
Isoefficiency function $\quad W$	$=\frac{E}{1-F_{i}} T_{o}(W, p)$.
	$W=K T_{0}(\mathrm{~W}, \mathrm{p})$

Is Our Algorithm Scalable?

- $T_{o}=p T_{P}-W \Rightarrow T_{0}=t_{s} p \log p+t_{w} n p$.
- We want to determine $\mathrm{W}=\mathrm{KT}_{0}$. Try with both terms separately:
- $W=K t_{s} p \log p$.
- $W=K t_{w} n p=n^{2} \Rightarrow W=\left(K t_{w} p\right)^{2}$.
- Bound from concurrency: $p=O(n) \Rightarrow W=\Omega\left(p^{2}\right)$.
- $W=\Theta\left(p^{2}\right)$: asymptotic isoefficiency function. Rate to increase the problem size (in function of p) to maintain a fixed efficiency: $p=\Theta(n)$.

Matrix*Vector - 2-D

- Matrix $n^{*} n$ partitioned on $n^{*} n$ processes.
- Vector $n^{*} 1$ distributed in the last (or $1^{\text {st }}$ column).
- Similarly we want fewer processes: blocks of $(n / \sqrt{ })^{2}$ elements.

Matrix*Vector - 2-D

Processes in column i need element of the vector in row i.

1. Distribute on diagonal.
2. One-to-all broadcast on columns.
3. Multiplication.
4. All-to-one reduction (+).

Example Matrix*Vector (Program 6.8)

Partition.

Distribute vector.
Sum reduce on rows.

Row sub-topology. Colum sub-topology.

Which one is better? 1-D or 2-D?

Analysis

- Communications:
- one-to-one $\Theta(1)+$
- one-to-all broadcast $\Theta(\log n)+$
- all-to-one reduction $\Theta(\log n)$.
- + multiplications $\Theta(1)$.
- $T_{p}=\Theta\left(n^{2} \log n\right) \Rightarrow$ not cost-optimal.
- Brent's scheduling principle?

Using Fewer Processes

- Blocks of $\left(n / \sqrt{ } p^{2}\right.$ elements. Costs:
- one to one in $t_{s}+t_{w} n / \sqrt{ } p+$
- one-to-all broadcast in $\left(t_{s}+t_{w} n / \sqrt{ }\right) \log \sqrt{ } p+$
- all-to-one reduction in $\left(t_{s}+t_{w} n / \sqrt{ }\right) \log \sqrt{ } p+$
- computations in $(n / \sqrt{ } /)^{2}$.
- Total $\sim n^{2} / p+t_{s} \log p+\left(t_{w} n / \sqrt{ }\right) \log p$.
- $p T_{\rho}=\Theta\left(n^{2}\right) \Rightarrow$ cost-optimal.

Scalability Analysis

- $T_{o}=p T_{p}-W=t_{s} \log p+t_{w} n / p \log p$.
- As before, isoefficiency analysis:
- $W=K t_{s} p \log p$.
- $W=K t_{w} n \sqrt{ } p \log p=n^{2} \Rightarrow W=\left(K t_{w} \sqrt{ } p \log p\right)^{2}$.
- Bound from concurrency: $p=O\left(n^{2}\right) \Rightarrow W=\Omega(p)$.
- $W=\Theta\left(p \log ^{2} p\right)$.
- $p=f(n) ? p \log ^{2} p=\Theta\left(n^{2}\right) \ldots p=\Theta\left(n^{2} / \log ^{2} n\right)$.

Which One Is Better?

- 1-D: $T_{p} \sim n^{2} / p+t_{s} \log p+t_{w} n$.
- 2-D: $T_{p} \sim n^{2} / p+t_{s} \log p+\left(t_{w} n / \sqrt{ } p\right) \log p$.
- 1-D: $W=\Theta\left(p^{2}\right)$.
- 2-D: $W=\Theta\left(p \log ^{2} p\right)$.
- Degree of concurrency...

Block Matrix*Matrix

procedure BLOCK_MAT_MULT(A,B,C) for $i:=0$ to $q-1$ do
for $\mathrm{j}:=0$ to $\mathrm{q}-1$ do
$C[i, j]:=0$
for $k:=0$ to $q-1$ do
$C[i, j]:=C[i, j]+A[i, k] * B[k, j]$
done
done
done
endproc $\quad q^{*} q$ blocks of $(n / q)^{*}(n / q)$ submatrices. Still n^{3} additions \& multiplications.

A Simple Parallel Algorithm

- Map the algorithm to $p=q^{2}$ processes.
- We need all $A[i, k]$ and $B[k, j]$ to compute the $C[i, j]$.
- Steps:
- All-to-all broadcast of $A[i, k]$ on rows.
- All-to-all broadcast of $B[k, j]$ on columns.
- Local multiplications.

Analysis

- Costs:
- all-to-all $\sqrt{ } p$ broadcasts of n^{2} / p elements
$=t_{s} \log \sqrt{ } p+t_{w}\left(n^{2} / p\right)(\sqrt{ } p-1) * 2$
-+ computations $=\sqrt{ } / p$ multiplications of $(n / \sqrt{ }) *(n / \sqrt{ } p)$ matrices cost n^{3} / p.
- $p T_{p}=\Theta\left(n^{3}\right)$ for $p=O\left(n^{2}\right) \Rightarrow$ cost-optimal.
- Isoefficiency $W=\Theta\left(p^{3 / 2}\right)$.
- Drawback: memory requirement in $n^{2} \sqrt{ } p$.
Better?

Cannon's Algorithm

- Idea: re-schedule computations to avoid contention.
- Processes on rows i hold a different A[i,k].
- Processes on columns j hold a different $B[k, j]$.
- Rotate the matrices \Rightarrow we need only 2 submatrices per process at any time.
\Rightarrow memory efficient in $O\left(n^{2}\right)$.

Align A \& B

$\mathrm{A}_{0,0}$	$\mathrm{~A}_{0,1}$	$\mathrm{~A}_{0,2}$	$\mathrm{~A}_{0,3}$
$\mathrm{~A}_{1,0}$	$\mathrm{~A}_{1,1}$	$\mathrm{~A}_{1,2}$	$\mathrm{~A}_{1,3}$
\ll	$<$	$<$	\cdots
$\mathrm{A}_{2,0}$	$\mathrm{~A}_{2,1}$	$\mathrm{~A}_{2,2}$	$\mathrm{~A}_{2,3}$
$<$			
$\mathrm{A}_{3,0}$	$\mathrm{~A}_{3,1}$	$\mathrm{~A}_{3,2}$	$\mathrm{~A}_{3,3}$
\ll			

(a) Initial alignment of A

$\mathrm{B}_{0,0}$	$\mathrm{~B}_{0,1}$	$\mathrm{~B}_{0,2}$	$\mathrm{~B}_{0,3}$
$\mathrm{~B}_{1,0}$	$\mathrm{~B}_{1,1}$	$\mathrm{~B}_{1,2}$	$\mathrm{~B}_{1,3}$
$\mathrm{~B}_{2,0}$	$\mathrm{~B}_{2,1}$	$\mathrm{~B}_{2,2}$	$\mathrm{~B}_{2,3}$
$\mathrm{~B}_{3,0}$	$\mathrm{~B}_{3,1}$	$\mathrm{~B}_{3,2}$	$\mathrm{~B}_{3,3}$

(b) Initial alignment of B

(a) Initial alignment of A

(c) A and B after initial alignment

(b) Initial alignment of B

(d) Submatrix locations after first shift

$\mathrm{A}_{0,3}$	$\mathrm{A}_{0,0}$	$\mathrm{A}_{0,1}$	$\mathrm{A}_{0,2}$
$\mathrm{B},{ }_{n}$	$\mathrm{R}_{n},$	B	$\mathrm{R}_{2},$

(c) A and B after initial alignment

$\mathrm{A}_{0,2}$ $\mathrm{~B}_{2,0}$	$\mathrm{A}_{0,3}$ $\mathrm{~B}_{3,1}$	${ }^{\mathrm{A}_{0,0}}{ }^{\text {c }}$	$\mathrm{A}_{0,1}$ $\mathrm{~B}_{1,3}$
$\mathrm{A}_{1,3} \times$ $\mathrm{B}_{3,0}$	$\mathrm{A}_{1,0}$ $\mathrm{~B}_{0,1}$	$\mathrm{A}_{1,1}{ }^{\text {c }}$ $\mathrm{B}_{1,2}$	$\mathrm{A}_{1,2}<$ $\mathrm{B}_{2,3}$
${ }^{\mathrm{A}_{2,0}}{ }^{\text {B }}$	${ }^{\mathrm{A}_{2,1}} \mathrm{~B}_{1,1}$	$\mathrm{A}_{2,2}$ $\mathrm{~B}_{2,2}$	$\mathrm{A}_{2,3}=$ $\mathrm{B}_{3,3}$
$\mathrm{A}_{3,1}$ $\mathrm{~B}_{1,0}$	$\mathrm{A}_{3,2}$ $\mathrm{~B}_{2,1}$	${ }^{\mathrm{A}_{3,3}}{ }^{\text {B }}$ ¢ ${ }_{3,2}$	$\mathrm{A}_{3,0}$ $\mathrm{~B}_{0,3}$

(d) Submatrix locations after first shift

$\mathrm{A}_{0,3}$	$\mathrm{~A}_{0,0}$	$\mathrm{~A}_{0,1}$	$\mathrm{~A}_{0,2}$
$\mathrm{~B}_{3,0}$	$\mathrm{~B}_{0,1}$	$\mathrm{~B}_{1,2}$	$\mathrm{~B}_{2,3}$
$\mathrm{~A}_{1,0}$	$\mathrm{~A}_{1,1}$	$\mathrm{~A}_{1,2}$	$\mathrm{~A}_{1,3}$
$\mathrm{~B}_{0,0}$	$\mathrm{~B}_{1,1}$	$\mathrm{~B}_{2,2}$	$\mathrm{~B}_{3,3}$
$\mathrm{~A}_{2,1}$	$\mathrm{~A}_{2,2}$	$\mathrm{~A}_{2,3}$	$\mathrm{~A}_{2,0}$
$\mathrm{~B}_{1,0}$	$\mathrm{~B}_{2,1}$	$\mathrm{~B}_{3,2}$	$\mathrm{~B}_{0,3}$
$\mathrm{~A}_{3,2}$	$\mathrm{~A}_{3,3}$	$\mathrm{~A}_{3,0}$	$\mathrm{~A}_{3,1}$
$\mathrm{~B}_{2,0}$	$\mathrm{~B}_{3,1}$	$\mathrm{~B}_{0,2}$	$\mathrm{~B}_{1,3}$

(e) Submatrix locations after second shift
(f) Submatrix locations after third shift

Figure 8.3 The communication steps in Cannon's algorithm on 16 processes.

Analysis

- Costs:
- 2* (A \& B) $\sqrt{ }$ p-single step shifts = $2\left(\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{w}} \mathrm{n}^{2} / \mathrm{p}\right) \sqrt{ } \mathrm{p}+$
- $\sqrt{ } \mathrm{p}$ multiplications of $(\mathrm{n} / \sqrt{ } \mathrm{p})^{*}(\mathrm{n} / \sqrt{ } \mathrm{p})$ submatrices $=n^{3} / \mathrm{p}$.
- Cost-optimal, same isoefficiency function as previously.

The DNS Algorithm

- 3-D partitioning!
- Cube with faces corresponding to A, B, C.
- Internal nodes correspond to multiply operations $\mathrm{P}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}$.
- Multiplications in time $\Theta(1)$.
- Additions in time $\Theta(\log n)$.
- Communication...
- Can use up to n^{3} processes - better concurrency.

i
(c) After broadcasting $A[i, j]$ along j axis
(d) Corresponding distribution of B

Figure 8.4 The communication steps in the DNS algorithm while multiplying 4×4 matrices A and B on 64 processes. The shaded processes in part (c) store elements of the first row of A and the shaded processes in part (d) store elements of the first column of B.

Communication Steps

- Move the columns of A \& rows of B.
- One-to-all broadcast along j \& i axis.
- All-to-one reduction (+) along k axis.
- Communication on groups of n processes, in time $\Theta(\log n)$.
- Not cost optimal for n^{3} processes.

Brent's Scheduling Principle

Theorem
If a parallel computation consists of k phases
taking time $t_{1}, t_{2}, \ldots, t_{k}$
using $a_{1}, a_{2}, \ldots, a_{k}$ processors
in phases $1,2, \ldots, k$
then the computation can be done in time $O(a / p+t)$ using p processors where $t=\operatorname{sum}\left(t_{i}\right), a=\operatorname{sum}\left(a_{i} t_{i}\right)$.

Look At One Dimension

- k phases $=\log n$.
- $t_{i}=$ constant time.
- $a_{i}=n / 2, n / 4, \ldots, 1$ processors.

$$
p=q^{3}
$$

- With q processors we can use time $O(\log n+n / p)$.
- Choose $q=O(n / \log n) \rightarrow$ time $O(\log n)$ and this is optimal!

$$
\text { 3-D: use } p=O\left(n^{3} / \log ^{3} n\right)
$$

Systems of Linear Equations

$$
\begin{aligned}
& a_{0,0} x_{0}+a_{0,1} x_{1}+\ldots+a_{0, n-1} x_{n-1}=b_{0} \\
& \ldots \\
& a_{n-1,0} x_{0}+a_{n-1,1} x_{1}+\ldots+a_{n-1, n-1} x_{n-1}=b_{n-1}
\end{aligned}
$$

Solving Systems of Linear Equations

- Step 1: Reduce the original system to

- Step2: Solve \& back-substitute from x_{n-1} to x_{0}.

Technical Issues

- Non singular matrices.
- Numerical precision (is the solution numerically stable) \rightarrow permute columns.
- In particular no division by zero, thanks.
- Procedure known as Gaussian elimination with partial pivoting.

Gaussian Elimination

1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin
3. for $k:=0$ to $n-1$ do \quad * Outer loop */
4. begin
$W=2 n^{3} / 3$
5. for $j:=k+1$ to $n-1$ do $A[k, j]:=A[k, j] / A[k, k] ; / *$ Division step */
$y[k]:=b[k] / A[k, k]$;
$A[k, k]:=1$;
for $i:=k+1$ to $n-1$ do
begin
for $j:=k+1$ to $n-1$ do
$A[i, j]:=A[i, j]-A[i, k] \times A[k, j] ; / *$ Elimination step */
6. $b[i]:=b[i]-A[i, k] \times y[k]$;
7. $A[i, k]:=0$;
8. endfor; /* Line 9 */
9. endfor; /* Line 3 */
10. end GAUSSIAN_ELIMINATION

Parallel Gaussian Elimination

- 1-D partitioning:
- 1 process/row.
- Process j computes A[*,j].
- Cost $(+$ communication $)=\Theta\left(n^{3} \log n\right)$ not cost optimal.
- All processes work on the same iteration.
- $\mathrm{k}+1$ iteration starts when $\mathrm{k}^{\text {th }}$ iteration is complete.
- Improve: pipelined/asynchronous version.

Pipelined Version

1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin
3. for $k:=0$ to $n-1$ do /* Outer loop */
4. begin
5.
6. end GAUSSIAN_ELIMINATION

Pipelined Gaussian Elimination

- No $\log \underline{n}$ for communication (no broadcast) and the rest of the computations are the same.
- The pipelined version is cost-optimal.
- Fewer processes:
- Block 1-D partitioning, loss of efficiency due to idle processes (load balance problem).
- Cyclic 1-D partitioning better.

Gaussian Elimination - 2-D Partitioning

- Similar as before.
- Pipelined version cost-optimal.
- More scalable than 1-D.

Finally Back-Substitution

1. procedure BACK_SUBSTITUTION (U, x, y)
2. begin
3. for $k:=n-1$ downto 0 do $/ *$ Main loop */
4. begin
5. $\quad x[k]:=y[k]$;
6. for $i:=k-1$ downto 0 do
7. $y[i]:=y[i]-x[k] \times U[i, k]$;
8. endfor;
9. end BACK_SUBSTITUTION

Intrinsically serial algorithm. Pipelined parallel version not
Algorithm 8.5 A serial algorithm for back-substiti COSt optimal.
entries of the principal diagonal equal to one, and all
Does not matter because of lower order of magnitude.

