Dense Matrix Algorithms (Chapter 8)

Alexandre David B2-206

Dense Matrix Algorithm

- Dense or full matrices: few known zeros.
 Other algorithms for sparse matrix.
- Square matrices for pedagogical purposes only – can be generalized.
- Natural to have data decomposition.
 - 3.2.2 input/output/intermediate data.
 - 3.4.1 mapping schemes based on data partitioning.

Today

- Matrix*Vector
- Matrix*Matrix
- Solving systems of linear equations.

Matrix*Vector – Recall

$$y_i = \sum_{k=1}^n a_{ik} x_k$$

Serial algorithm: n^2 multiplications and addition. $W = n^2$

Matrix*Matrix – Recall

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Serial algorithm: n^{3} multiplications and addition. $W = n^{3}$

Matrix*Vector – Serial Algorithm

Matrix*Matrix – Serial Algorithm

procedure MAT_MULT(A,B,C) for i := 0 to n-1 do **for** j := 0 **to** n-1 **do** C[i,j] := 0 $c_{ii} = \sum a_{ik} b_{ki} \rightarrow$ **for** k := 0 **to** n-1 **do** C[i,j] := C[i,j] + A[i,k]*B[k,j]k=1done done done endproc How to parallelize?

Matrix*Vector – Row-wise 1-D Partitioning

- Initial distribution:
 - Each process has a row of the *n*n* matrix.
 - Each process has an element of the *n*1* vector.
 - Each process is responsible for computing one element of the result.

Matrix*Vector – 1-D

But every process needs the entire vector \Rightarrow all-to-all broadcast.

All-to-All Broadcast

Parallel Computation

$$y_i = \sum_{k=1}^n a_{ik} x_k$$
 in parallel on the n processes.

04-04-2006

12

Analysis

- All-to-all broadcast & multiplications in ^O(n).
- For n processes $W=n^2=nT_P$. \Rightarrow The algorithm is cost-optimal.

A parallel system is cost-optimal iff $pT_P = \Theta(W)$.

Performance Metrics

- Efficiency *E=S/p*.
 - Measure time spent in doing useful work.
 - Previous sum example: $E = \Theta(1/\log n)$.
- Cost $C = pT_{P}$.
 - A.k.a. work or processor-time product.
 - Note: $E=T_S/C$.
 - Cost optimal if E is a constant.

Using Fewer Processes

- Brent's scheduling principle: It's possible.
- Using *p* processes:
 - n/p rows per process.
 - Communication time = $t_s \log p + t_w(n/p)(p-1)$ ~ $t_s \log p + t_w n = \Theta(n)$.
 - Computation: n*n/p. $\Rightarrow pT_P = \Theta(n^2) = W \Rightarrow It is cost optimal.$

Scalability – Recall

- Efficiency increases with the size of the problem.
- Efficiency decreases with the number of processors.
- Scalability measures the ability to increase speedup in function of *p*.

Isoefficiency Function

For scalable systems efficiency can be kept constant if T₀/W is kept constant.

Is Our Algorithm Scalable?

- $T_{0} = pT_{P} W \Rightarrow T_{0} = t_{s}p \log p + t_{w}np.$
- We want to determine W=KT₀. Try with both terms separately:
 - *W=Kt_sp* log*p*.
 - $W = Kt_w np = n^2 \Rightarrow W = (Kt_w p)^2$.
 - Bound from concurrency: $p=O(n) \Rightarrow W=\Omega(p^2)$.
 - $W = \Theta(p^2)$: asymptotic isoefficiency function. Rate to increase the problem size (in function of p) to maintain a fixed efficiency: $p = \Theta(n)$.

Matrix*Vector – 2-D

- Matrix n*n partitioned on n*n processes.
- Vector n*1 distributed in the last (or 1st column).
- Similarly we want fewer processes: blocks of $(n/\sqrt{p})^2$ elements.

Matrix*Vector – 2-D

Processes in column i need element of the vector in row i.

- 1. Distribute on diagonal.
- 2. One-to-all broadcast on columns.
- 3. Multiplication.
- 4. All-to-one reduction (+).

Which one is better? 1-D or 2-D?

Analysis

- Communications:
 - one-to-one *Θ(1)* +
 - one-to-all broadcast O(log n) +
 - all-to-one reduction *Θ*(log*n*).
- + multiplications $\Theta(1)$.
- $T_{\rho} = \Theta(n^2 \log n) \Rightarrow$ not cost-optimal.
- Brent's scheduling principle?

Using Fewer Processes

- Blocks of $(n/\sqrt{p})^2$ elements. Costs:
 - one to one in $t_s + t_w n/\sqrt{p} + t_w n/\sqrt{p}$
 - one-to-all broadcast in $(t_s + t_w n/\sqrt{p}) \log \sqrt{p} +$
 - all-to-one reduction in $(t_s + t_w n/\sqrt{p}) \log \sqrt{p} +$
 - computations in $(n/\sqrt{p})^2$.
- Total ~ $n^2/p+t_s\log p+(t_wn/\sqrt{p})\log p$.
- $pT_P = \Theta(n^2) \Rightarrow \text{cost-optimal}.$

Scalability Analysis

- $T_0 = pT_P W = t_s \log p + t_w n \sqrt{p} \log p.$
- As before, isoefficiency analysis:

■ *W=Kt_sp* log*p*.

- $W = Kt_w n\sqrt{p} \log p = n^2 \Rightarrow W = (Kt_w \sqrt{p} \log p)^2.$
- Bound from concurrency: $p=O(n^2) \Rightarrow W=\Omega(p)$.

• $W = \Theta(p \log^2 p)$.

■ p=f(n)? $p \log^2 p = \Theta(n^2) \dots p = \Theta(n^2/\log^2 n)$.

Which One Is Better?

- 1-D: $T_P \sim n^2/p + t_s \log p + t_w n$.
- 2-D: $T_P \sim n^2/p + t_s \log p + (t_w n/\sqrt{p}) \log p$.

Degree of concurrency...

Block Matrix*Matrix

```
procedure BLOCK_MAT_MULT(A,B,C)
  for i := 0 to q-1 do
     for j := 0 to q-1 do
        C[i,j] := 0
        for k := 0 to q-1 do
           C[i,j] := C[i,j] + A[i,k] B[k,j]
        done
     done
  done
                q^{*}q blocks of (n/q)^{*}(n/q) submatrices.
endproc
                Still n<sup>3</sup> additions & multiplications.
```

A Simple Parallel Algorithm

- Map the algorithm to $p=q^2$ processes.
- We need all A[i,k] and B[k,j] to compute the C[i,j].
- Steps:
 - All-to-all broadcast of A[i,k] on rows.
 - All-to-all broadcast of B[k,j] on columns.
 - Local multiplications.

Analysis

- Costs:
 - all-to-all \sqrt{p} broadcasts of n^2/p elements = $t_s \log \sqrt{p+t_w(n^2/p)}(\sqrt{p-1})$ *2
 - + computations = \sqrt{p} multiplications of $(n/\sqrt{p})^*(n/\sqrt{p})$ matrices cost n^3/p .
 - $pT_P = \Theta(n^3)$ for $p = O(n^2) \Rightarrow$ cost-optimal.
 - Isoefficiency $W = \Theta(p^{3/2})$.
- Drawback: memory requirement in $n^2 \sqrt{p}$.

Cannon's Algorithm

- Idea: re-schedule computations to avoid contention.
 - Processes on rows i hold a different A[i,k].
 - Processes on columns j hold a different B[k,j].
 - Rotate the matrices ⇒ we need only 2 submatrices per process at any time.
 ⇒ memory efficient in O(n²).

 $A_{0,0}$ $A_{0,1}$ $A_{0,2}$ A_{0,3} -> $A_{1,0}$ $A_{1,1} \\$ $A_{1,2}$ $A_{1,3}$ <… < <... > - - -~> A_{2,1} A_{2,2} $A_{2,0}$ $A_{2,3}$ \leq >>> $A_{3,1}$ A_{3,2} A_{3,3} $A_{3,0}$ \leq

 $\mathrm{B}_{0,2}$ B_{0,1} B_{0,0} B_{0,3} Λ Ŵ $B_{1,1}$ $B_{1,0}$ B_{1,2} B_{1,3} $B_{2,1}$ B_{2,3} B_{2,0} B_{2,2} Ŵ V V $B_{3,0}$ **B**_{3,1} B_{3,2} B_{3,3}

(a) Initial alignment of A

(b) Initial alignment of B

(c) A and B after initial alignment

$$= \begin{bmatrix} A & A & A \\ A_{0,2} & A_{0,3} & A_{0,0} & A_{0,1} \\ B & B & B & B \\ \end{bmatrix}$$

(d) Submatrix locations after first shift

32

(d) Submatrix locations after first shift

A _{0,3} B _{3,0}	${f A}_{0,0} \ {f B}_{0,1}$	$\begin{array}{c} A_{0,1} \\ B_{1,2} \end{array}$	A _{0,2} B _{2,3}
$\begin{array}{c} \mathbf{A}_{1,0}\\ \mathbf{B}_{0,0} \end{array}$	$\begin{array}{c} A_{1,1} \\ B_{1,1} \end{array}$	A _{1,2} B _{2,2}	A _{1,3} B _{3,3}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,0}
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
A _{3,2}	A _{3,3}	A _{3,0}	A _{3,1}
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

Figure 8.3 The communication steps in Cannon's algorithm on 16 processes.

Analysis

- Costs:
 - 2* (A & B) \sqrt{p} -single step shifts = $2(t_s+t_wn^2/p)\sqrt{p} + \frac{1}{2}$
 - \sqrt{p} multiplications of $(n/\sqrt{p})^*(n/\sqrt{p})$ submatrices = n^3/p .
 - Cost-optimal, same isoefficiency function as previously.

The DNS Algorithm

- 3-D partitioning!
- Cube with faces corresponding to A, B, C.
- Internal nodes correspond to multiply operations P_{i,i,k}.
 - Multiplications in time $\Theta(1)$.
 - Additions in time Θ(log n).
 - Communication...
- Can use up to n³ processes better concurrency.

Alexandre David, MVP'06

(a) Initial distribution of A and B

(b) After moving A[i,j] from $P_{i,j,0}$ to $P_{i,j,j}$

Figure 8.4 The communication steps in the DNS algorithm while multiplying 4×4 matrices *A* and *B* on 64 processes. The shaded processes in part (c) store elements of the first row of *A* and the shaded processes in part (d) store elements of the first column of *B*.

Communication Steps

- Move the columns of A & rows of B.
- One-to-all broadcast along j & i axis.
- All-to-one reduction (+) along k axis.
- Communication on groups of *n* processes, in time Θ(log *n*).
- Not cost optimal for n³ processes.

Brent's Scheduling Principle

Theorem

If a parallel computation consists of *k* phases taking time $t_1, t_2, ..., t_k$ using $a_1, a_2, ..., a_k$ processors in phases 1, 2, ..., kthen the computation can be done in time O(a/p+t) using *p* processors where $t = sum(t_i), a = sum(a_it_i).$

Look At One Dimension

- k phases = logn.
- t_i = constant time.
- $a_i = n/2, n/4, ..., 1$ processors.

- With *q* processors we can use time O(log n+n/p).
- Choose q=O(n/log n) → time O(log n) and this is optimal!

Systems of Linear Equations

$$A \times x = b$$

$$a_{0,0} \times_0 + a_{0,1} \times_1 + \dots + a_{0,n-1} \times_{n-1} = b_0,$$

...
 $a_{n-1,0} \times_0 + a_{n-1,1} \times_1 + \dots + a_{n-1,n-1} \times_{n-1} = b_{n-1}$

Solving Systems of Linear Equations

Step 1: Reduce the original system to

Step2: Solve & back-substitute from x_{n-1} to x₀.

Technical Issues

- Non singular matrices.
- Numerical precision (is the solution numerically stable) → permute columns.
 - In particular no division by zero, thanks.
 - Procedure known as Gaussian elimination with partial pivoting.

Gaussian Elimination

Parallel Gaussian Elimination

- 1-D partitioning:
 - 1 process/row.
 - Process j computes A[*,j].
 - Cost (+communication) = Θ(n³log n) not cost optimal.
- All processes work on the same iteration.
 - k+1 iteration starts when kth iteration is complete.
 - Improve: pipelined/asynchronous version.

Pipelined Version

procedure GAUSSIAN_ELIMINATION (A, b, y)1. 2. begin 3. for k := 0 to n - 1 do /* Outer loop */ 4. begin 5. for i := k + 1 to n - 1 do A[k, j] := A[k, j]/A[k, k]; /* Division step */ 6. 7. y[k] := b[k]/A[k,k];P_k forwards & does not wait. 8. A[k, k] := 1;for i := k + 1 to n - 1 do 9 10. P_is forward & do not wait. begin for j := k + 1 to n - 1 do 11. $A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /*$ Elimination step */ 12. $b[i] := b[i] - A[i, k] \times y[k];$ 13. A[i, k] := 0;14. endfor; 15 /* Line 9 */ endfor; /* Line 3 */ 16. 17. end GAUSSIAN_ELIMINATION

Pipelined Gaussian Elimination

- No log<u>n</u> for communication (no broadcast) and the rest of the computations are the same.
- The pipelined version is cost-optimal.
- Fewer processes:
 - Block 1-D partitioning, loss of efficiency due to idle processes (load balance problem).
 - Cyclic 1-D partitioning better.

Gaussian Elimination – 2-D Partitioning

- Similar as before.
- Pipelined version cost-optimal.
- More scalable than 1-D.

Finally Back-Substitution

procedure BACK_SUBSTITUTION (U, x, y)1. 2. begin for k := n - 1 downto 0 do /* Main loop */ 3. 4. begin 5. x[k] := y[k];for i := k - 1 downto 0 do 6. 7. $v[i] := v[i] - x[k] \times U[i, k];$ 8. endfor; Intrinsically serial algorithm. end BACK_SUBSTITUTION 9. Pipelined parallel version not cost optimal. Algorithm 8.5 A serial algorithm for back-substitu entries of the principal diagonal equal to one, and all Does not matter because of lower order of magnitude.