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Dense Matrix Algorithm
Dense or full matrices: few known zeros.

Other algorithms for sparse matrix.

Square matrices for pedagogical purposes 
only – can be generalized.
Natural to have data decomposition.

3.2.2 input/output/intermediate data.
3.4.1 mapping schemes based on data 
partitioning.
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Today
Matrix*Vector
Matrix*Matrix
Solving systems of linear equations.
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Matrix*Vector – Recall
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Serial algorithm:
n2 multiplications and
addition.

W = n2
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Matrix*Matrix – Recall
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Serial algorithm:
n3 multiplications and
addition.

W = n3
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Matrix*Vector – Serial Algorithm
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procedure MAT_Vec(A,x,y)
for i := 0 to n-1 do

y[i] := 0
for k := 0 to n-1 do

y[i] := y[i] + A[i,k]*x[k]
done

done
endproc

How to parallelize?
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Matrix*Matrix – Serial Algorithm
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procedure MAT_MULT(A,B,C)
for i := 0 to n-1 do

for j := 0 to n-1 do
C[i,j] := 0
for k := 0 to n-1 do

C[i,j] := C[i,j] + A[i,k]*B[k,j]
done

done
done

endproc

How to parallelize?
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Matrix*Vector – Row-wise 1-D 
Partitioning
Initial distribution:

Each process has a row of the n*n matrix.
Each process has an element of the n*1
vector.
Each process is responsible for computing one 
element of the result.
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Matrix*Vector – 1-D

A x y

n processes

But every process needs the entire vector
⇒ all-to-all broadcast.
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All-to-All Broadcast

x
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Parallel Computation
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in parallel on the n processes.
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Example Matrix*Vector 
(Program 6.4)

Partition on rows.

Allgather (All-to-all broadcast)

Multiply
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Analysis
All-to-all broadcast & multiplications in 
Θ(n).
For n processes W=n2=nTP.
⇒ The algorithm is cost-optimal.

A parallel system is cost-optimal iff
pTP=Θ(W).
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Performance Metrics
Efficiency E=S/p.

Measure time spent in doing useful work.
Previous sum example: E = Θ(1/logn).

Cost C=pTP.
A.k.a. work or processor-time product.
Note: E=TS/C.
Cost optimal if E is a constant.
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Using Fewer Processes
Brent’s scheduling principle: It’s possible.
Using p processes:

n/p rows per process.
Communication time = ts logp+tw(n/p)(p-1)
~ ts logp+twn = Θ(n).
Computation: n*n/p.
⇒ pTP = Θ(n2) = W ⇒ It is cost optimal.
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Scalability – Recall
Efficiency increases with the size of the 
problem.
Efficiency decreases with the number of 
processors.
Scalability measures the ability to increase 
speedup in function of p.
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Isoefficiency Function
For scalable systems efficiency can be kept 
constant if T0/W is kept constant.

For a target E

Keep this constant

Isoefficiency function

W=KT0(W,p)
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Is Our Algorithm Scalable?
T0=pTP-W ⇒ T0=tsp logp+twnp.
We want to determine W=KT0. Try with 
both terms separately:

W=Ktsp logp.
W=Ktwnp=n2 ⇒ W=(Ktwp)2.
Bound from concurrency: p=O(n) ⇒ W=Ω(p2).
W=Θ(p2) : asymptotic isoefficiency function.
Rate to increase the problem size (in function 
of p) to maintain a fixed efficiency: p=Θ(n).
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Matrix*Vector – 2-D
Matrix n*n partitioned on n*n processes.
Vector n*1 distributed in the last (or 1st

column).
Similarly we want fewer processes: blocks 
of (n/√p)2 elements.
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Matrix*Vector – 2-D

A x y

Processes in column i need element of the vector in row i.
1. Distribute on diagonal.
2. One-to-all broadcast on columns.
3. Multiplication.
4. All-to-one reduction (+).
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Example Matrix*Vector 
(Program 6.8)

Partition.

Row sub-topology.
Colum sub-topology.

Distribute vector.

Local multiplication.

Sum reduce on rows.
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Which one is better? 1-D or 2-D?
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Analysis
Communications:

one-to-one Θ(1) +
one-to-all broadcast Θ( logn) +
all-to-one reduction Θ( logn).

+ multiplications Θ(1).
TP=Θ(n2 logn) ⇒ not cost-optimal.
Brent’s scheduling principle?
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Using Fewer Processes
Blocks of (n/√p)2 elements. Costs:

one to one in ts+twn/√p +
one-to-all broadcast in (ts+twn/√p) log√p +
all-to-one reduction in (ts+twn/√p) log√p +
computations in (n/√p)2.

Total ~ n2/p+ts logp+(twn/√p) logp.
pTP=Θ(n2) ⇒ cost-optimal.
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Scalability Analysis
T0=pTP-W=ts logp+twn√p logp.
As before, isoefficiency analysis:

W=Ktsp logp.
W=Ktwn√p logp=n2 ⇒ W=(Ktw√p logp)2.
Bound from concurrency: p=O(n2) ⇒ W=Ω(p).
W=Θ(p log2p).

p=f(n)? p log2p=Θ(n2) … p=Θ(n2/ log2n).
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Which One Is Better?
1-D: TP ~ n2/p+ts logp+twn.
2-D: TP ~ n2/p+ts logp+(twn/√p) logp.

1-D: W=Θ(p2).
2-D: W=Θ(p log2p).

Degree of concurrency…
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Block Matrix*Matrix

procedure MAT_MULT(A,B,C)
for i := 0 to n-1 do

for j := 0 to n-1 do
C[i,j] := 0
for k := 0 to n-1 do

C[i,j] := C[i,j] + A[i,k]*B[k,j]
done

done
done

endproc

BLOCK_

q

q
q

q*q blocks of (n/q)*(n/q) submatrices.
Still n3 additions & multiplications.
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A Simple Parallel Algorithm
Map the algorithm to p=q2 processes.
We need all A[i,k] and B[k,j] to compute 
the C[i,j].
Steps:

All-to-all broadcast of A[i,k] on rows.
All-to-all broadcast of B[k,j] on columns.
Local multiplications.
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Analysis
Costs:

all-to-all √p broadcasts of n2/p elements
= ts log√p+tw(n2/p)(√p-1) *2
+ computations = √p multiplications of
(n/√p)*(n/√p) matrices cost n3/p.
pTP=Θ(n3) for p=O(n2) ⇒ cost-optimal.
Isoefficiency W=Θ(p3/2).

Drawback: memory requirement in n2√p.
Better?
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Cannon’s Algorithm
Idea: re-schedule computations to avoid 
contention.

Processes on rows i hold a different A[i,k].
Processes on columns j hold a different B[k,j].
Rotate the matrices ⇒ we need only 2 sub-
matrices per process at any time.
⇒ memory efficient in O(n2).
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Align A & B
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Analysis
Costs:

2* (A & B) √p-single step shifts =
2(ts+twn2/p)√p +
√p multiplications of (n/√p)*(n/√p) sub-
matrices = n3/p.
Cost-optimal, same isoefficiency function as 
previously.
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The DNS Algorithm
3-D partitioning!
Cube with faces corresponding to A, B, C.
Internal nodes correspond to multiply 
operations Pi,j,k.

Multiplications in time Θ(1).
Additions in time Θ(logn).
Communication…

Can use up to n3 processes – better 
concurrency.
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Communication Steps
Move the columns of A & rows of B.
One-to-all broadcast along j & i axis.
All-to-one reduction (+) along k axis.
Communication on groups of n processes, 
in time Θ(logn).
Not cost optimal for n3 processes.
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Brent’s Scheduling Principle

If a parallel computation consists of
k phases
taking time t1,t2,…,tk
using a1,a2,…,ak processors
in phases 1,2,…,k

then the computation can be done in time
O(a/p+t) using p processors where
t =sum(ti), a =sum(aiti).

Theorem
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Look At One Dimension
k phases = logn.
ti = constant time.
ai = n/2,n/4,…,1 processors.
With q processors we can use time
O( logn+n/p).
Choose q=O(n/ logn) → time O( logn) and 
this is optimal!

3-D: use p=O(n3/ log3n)

p=q3
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Systems of Linear Equations

A x b

a0,0x0+a0,1x1+…+a0,n-1xn-1=b0,
…
an-1,0x0+an-1,1x1+…+an-1,n-1xn-1=bn-1
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Solving Systems of Linear 
Equations
Step 1: Reduce the original system to

Step2:
Solve & back-substitute from xn-1 to x0.

x yU
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Technical Issues
Non singular matrices.
Numerical precision (is the solution 
numerically stable) → permute columns.

In particular no division by zero, thanks.
Procedure known as Gaussian elimination with 
partial pivoting.
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Gaussian Elimination

W=2n3/3
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Parallel Gaussian Elimination
1-D partitioning:

1 process/row.
Process j computes A[*,j].
Cost (+communication) = Θ(n3 logn) not cost 
optimal.

All processes work on the same iteration.
k+1 iteration starts when kth iteration is 
complete.
Improve: pipelined/asynchronous version.
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Pipelined Version

Pk forwards & does not wait.

Pjs forward & do not wait.
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Pipelined Gaussian Elimination
No logn for communication (no broadcast) 
and the rest of the computations are the 
same.
The pipelined version is cost-optimal.
Fewer processes:

Block 1-D partitioning, loss of efficiency due to 
idle processes (load balance problem).
Cyclic 1-D partitioning better.
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Gaussian Elimination – 2-D 
Partitioning
Similar as before.
Pipelined version cost-optimal.
More scalable than 1-D.
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Finally Back-Substitution

Intrinsically serial algorithm.
Pipelined parallel version not
cost optimal.
Does not matter because of
lower order of magnitude.


