Dense Matrix Algorithms

!'_ (Chapter 8)

Alexandre David
B2-206

Dense Matrix Algorithm

= Dense or full matrices: few known zeros.
= Other algorithms for sparse matrix.

= Square matrices for pedagogical purposes
only — can be generalized.

= Natural to have data decomposition.

= 3.2.2 input/output/intermediate data.

= 3.4.1 mapping schemes based on data
partitioning.

Today

= Matrix*Vector
= Matrix*Matrix
= Solving systems of linear equations.

04-04-2006 Alexandre David, MVP'06

iMatrix*Vector — Recall

A X y

X

Serial algorithm:

n
_ n2 multiplications and
Yi = Z A K | addition.
k=1 W = n?

04-04-2006 Alexandre David, MVP'06

iMatrix*Matrix — Recall

A B

Serial algorithm:
n3 multiplications and
addition.

W = n3

04-04-2006 Alexandre David, MVP'06

iMatrix*Vector — Serial Algorithm

procedure MAT_Vec(A,X,y)
fori:=0ton-1do

n y[i] ;=0
_ E for k := 0to n-1do
yi o Z aik Xk vli] := y[i] + A[i,k]*x[K]
k=1 done
done
endproc

How to parallelize?

iMatrix*Matrix — Serial Algorithm

procedure MAT_MULT(A,B,C)
fori:=0ton-1do
forj:=0ton-1do

n Cli,j]:=0
_ fork := 0 ton-1do
= > b, — Cli,j] := CIijjl + AL KI*BIk,]]
k=1 done
done
done
endproc

How to parallelize?

Matrix*Vector — Row-wise 1-D
iPartitioning

s Initial distribution:
= Each process has a row of the n*n matrix.

= Each process has an element of the n*7
vector.

= Each process is responsible for computing one
element of the result.

iMatrix*Vector - 1-D

A X y
n processes@ X E — E

04-04-2006

But every process needs the entire vector
—> all-to-all broadcast.

Alexandre David, MVP'06

‘LAII-to-AII Broadcast

04-04-2006 Alexandre David, MVP'06

10

iParaIIeI Computation

A X y
n processes@ X I — E
n

Yi = Z d; X, in parallel on the n processes.
k=1

04-04-2006 Alexandre David, MVP'06

11

Example Matrix*Vector

Partition on rows.
Multiply I

X

04-04-2006 Alexandre David, MVP'06

X

X

(Program 6.4)
I Allgather (All-to-all broadcast)
X =

12

iAnaIysis

= All-to-all broadcast & multiplications in
O(n).

= For n processes W=r¥=nT,
— The algorithm is cost-optimal.

A parallel system is cost-optimal iff
pT=O(W).

13

Performance Metrics

s Efficiency E=5/D.

= Measure time spent in doing useful work.

= Previous sum example: £= O(1/logn).
s Cost C=p7,

= A.K.a. work or processor-time product.

=« Note: £=74/C.

= Cost optimal if E is a constant.

14

Using Fewer Processes

= Brent’s scheduling principle: It's possible.

= Using p processes:
= /)/P rOWS per process.
= Communication time = £ logp+t,(n/p)(p-1)
~ t logp+t, n= 0O(n).
=« Computation: n*n/p.
= pTp = 0O(n?) = W = It is cost optimal.

15

Scalability — Recall

= Efficiency increases with the size of the
problem.

= Efficiency decreases with the number of
Processors.

= Scalability measures the ability to increase
speedup in function of p.

16

[soefficiency Function

= For scalable systems efficiency can be kept
constant if T,/W is kept constant.

For a target E

E_

1

1+ T,(W,p)/W’

Ta(mp) _ l1-F

Keep this constant
P W

E ?

Isoefficiency function

W_

= To(W, p).

1—-F

W=KTo(W,p)

17

iIs Our Algorithm Scalable?

n 1,=pTl-W= T,=tplogp+t,np.
= We want to determine W=KT,. Try with
both terms separately:

» W=Ktplogp.
» W=Kt, np=r¥ = W=(Kt,p)F.
= Bound from concurrency: p=0(n) = W=0Q(p°).

= W=0(p?): asymptotic isoefficiency function.
Rate to increase the problem size (in function
of p) to maintain a fixed efficiency: p=060(n).

18

iMatrix*Vector - 2-D

= Matrix n*n partitioned on n7*n processes.

= Vector n*7 distributed in the last (or 1%
column).

= Similarly we want fewer processes: blocks
of (n/vpJF elements.

19

iMatrix*Vector - 2-D

Processes in column i need element of the vector in row i.

1. Distribute on diagonal.
2. One-to-all broadcast on columns.
3. Multiplication.

4. All-to-one reduction (+).
04-04-2006 Alexandre David, MVP'06

20

Example Matrix*Vector

i(Program 6.8)

Partition. Distribute vector.
Sum reduce oh rows.
. > <
]
X [> <
L]
]
> <
]
Row sub-topology. Local multiplication.

04-04-2006 Alexandre David, MVP'06 21

+

Which one is better? 1-D or 2-D?

04-04-2006 Alexandre David, MVP'06

22

Analysis

= Communications:
= onhe-to-one O(1) +
= one-to-all broadcast ©@(logn) +
= all-to-one reduction @(logn).
= + multiplications ©(1).
s 7,=0(r¥logn) = not cost-optimal.
= Brent’s scheduling principle?

23

Using Fewer Processes

= Blocks of (n/vp) elements. Costs:
= one to one in t,+t,/vp +
= one-to-all broadcast in (¢.+t, n/vp)logvp +
= all-to-one reduction in (¢.+t,n1/vp)logvp +
= computations in (n/vp)F.

= Total ~ i2/p+t.logp+(t,n/vp)logp.
n p7,=0(r¥) = cost-optimal.

24

iScaIabiIity Analysis

« 7,=pT,-W=t.logp+t nvplogp.
= As before, isoefficiency analysis:
« W=Ktplogp.
= W=Kt, nvplogp=r? = W=(Kt,vplogp).
= Bound from concurrency: p=0(r¥) = W=0(p).
= W=0(plog<p).
s p=f(n)? plog?p=0(r¥) ... p=06(r¥/log<n).

25

iWhich One Is Better?

n 1-D: 7, ~ ré/p+Et logp+t, n.
« 2-D: 7, ~ r/p+tlogp+(t,n/vp)logp.

= 1-D: W=@(p2)
x 2-D: W=0O(plog<p).

= Degree of concurrency...

26

iBIock Matrix*Matrix

procedure BLOCK_MAT_MULT(A,B,C)
fori:=0tog-1do
forj:=0tog-1do
Cli,j]:=0
fork:=0tog-1do
Cli;j] := Cli;j] + Ali,k]*B[k,]]
done
done
done
endproc a*q blocks of (n/g)*(n/q) submatrices.

Still n3 additions & multiplications.

27

iA Simple Parallel Algorithm

= Map the algorithm to p=g? processes.
= We need all A[i,k] and B[kK,j] to compute

the CIi,j].
= Steps:
= All-to-all

= All-to-all
= Local mu

broadcast of A[i,k] on rows.
proadcast of B[k,j] on columns.

tiplications.

28

Analysis

s Costs:

= all-to-all vp broadcasts of 72/p elements
= Llogvp+t(rP/p)(Vip-1) *2
= + computations = 1» multiplications of
(n/vp)*(n/v/p) matrices cost n3/p.
« pT,=0(rP)for p=0(r¥) = cost-optimal.
=« Isoefficiency W=0(p>?).
= Drawback: memory requirement in r2vp.

Better?

29

Cannon’s Algorithm

= Idea: re-schedule computations to avoid
contention.
= Processes on rows i hold a different A[i,k].
= Processes on columns j hold a different B[k,j].

= Rotate the matrices = we need only 2 sub-
matrices per process at any time.
= memory efficient in O(r¥).

30

AO_,O AU_,I AO,Z AO,'B
A | A | A | A
o [| o
A3 0 TAB,I 13,2 13,3

(a) Initial alignment of A

Boo | Boi Bo, | Bos
| A AN
| v
Bio | Bi1 | Bia [Bis
! A AL
g N
By By A B, B3
v v v
Bsp | Bsp | Bsax | Bsj;

(b) Initial alignment of B

31

(a) Initial alignment of A (b) Initial alignment of B
4 4 4 4 g Y 4 4
=1 Ago =] Ao T AT Aoz~ <%‘AO.,1< Agr = Aoz =] Agp =
/;Boo /TBU 4]322 4]3%% %Bl,() /Ile 4B%2 /]Boz
AT ARSI AT AT “ITAL AL AT AL
41310 /fle 4322 4B0,3 4]320 /IB%I 4302 4B1%
=1 A= Ags =T Ago=[Al = Ap3=[i Ago =] Ag Aj)
4]320 /IB%I ABoz 4]31% %33,0 /me /fBlz /]Bzz
=T As3=T Asp™ : Az ‘ Azp = =l Az = Az Az <[Aszs=
,Bso | Bo %Bl,z ,Bas JBoo | Bui | Bax | Bss
(c) A and B after mitial alignment (d) Submatrix locations after first shift
d 4 1 4
<‘ Ag2 ‘ A3 | Ao Ao = ‘ Aoz | Aoo | Aol ‘ Aoy
‘D ‘™ ‘™ ‘™ R- A Ra. R. A RA-

Jj.
|4 3.0

|4f’0,1

|

Byo

IR
> |

(c) A and B after mitial alignment

4 4 il 4
S A2 T Aoz T oo T Ao
B B,, | B B
. 3, . 3
. 2.0) 1) 0.2 . 1.
I AT AT AL A
Bso | Box | Bia | Bas
VIl VI Vil Ve
= Apo =17 Ap 1= Ao =10 Ags
B B B B, ,
. 0.0) 1.1)) P
=1 A T AT AT AT
B,y B, B3, B3

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

| . By 0

E

By,

E

B>

E

B33 |

(d) Submatrix locations after first shift

Aoz | Aoo | Aol | Aoz
Bs By, B, B,3
Ao | Al | Aa | Als
B0 By B,, Bs;
Ary | Asn | Aas | Az
Bio B, B;, B3
Azn | Ass | Asg | Az
B,y B; By, B ;

Figure 8.3 The communication steps in Cannon’s algorithm on 16 processes.

33

Analysis

= Costs:
= 2* (A & B) Vp-single step shifts =
2(t+t,n2/p)Vp +
= Vp multiplications of (n/vp)*(n/Vp) sub-
matrices = n3/p.
= Cost-optimal, same isoefficiency function as
previously.

34

iThe DNS Algorithm

= 3-D partitioning!
= Cube with faces corresponding to A, B, C.
= Internal nodes correspond to multiply
operations P, ; ..
= Multiplications in time O(1).
= Additions in time O(logn).
« Communication...

= Can use up to n3 processes — better
concurrency.

35

k=2

k=0

(b) After movingA4/ij/ fromP, ,toF .

(a) Initial distribution of 4 and B

@ /0,
@ @ @ - @@@ @@ @@@
_""" ________ A /[//0,3]XB/{3,0]/
W @ 6 * @ @ @ @
A _£8 6 8 @ i £6_©8_ 8 @
.0 & @ rrRig b
@ _ @ N & W O
« _£©_ 0 9 9 i NN
0 o - DS
i i
©. 9 ® o e
! (c) After broadcastingA4/i,j/ along j axis (d) Corresponding distribution of B

Figure 8.4 The communication steps in the DNS algorithm while multiplying 4 x 4 matrices 4
and B on 64 processes. The shaded processes in part (c) store elements of the first row of 4 and
the shaded processes in part (d) store elements of the first column of B.

iCommunication Steps

= Move the columns of A & rows of B.
= One-to-all broadcast along j & i axis.
= All-to-one reduction (+) along k axis.

= Communication on groups of 77 processes,
in time ©(logn).

= Not cost optimal for n3 processes.

38

iBrent’s Scheduling Principle

Theorem

If a parallel computation consists of
k phases

taking time #,7,,..,7,
using a,,a.,...,a, processors
in phases 1,2,..,.k
then the computation can be done in time

O(a/p+1)using p processors where
1 =sum(7), a=sum(at).

39

Look At One Dimension

= kK phases = logn.
= [; = constant time.
m d,= N/2,n/4,...,1 processors. D=3
= With g processors we can use time
O(logn+n/p).
= Choose g=0(n/logn) — time O(logn)and
this is optimal!

3-D: use p=0(r¥°/log’n)

40

iSystems of Linear Equations

Qg 0Xp+0g 1X1*...¥0g -1 X-1= bo.

C‘n-l,OXO"'C‘n-l,lxl"'---"'C‘n-l,n-lxn-lz n-1

04-04-2006 Alexandre David, MVP'06

41

Solving Systems of Linear

iEquations

= Step 1: Reduce the original system to

‘ X II
= Step2:

Solve & back-substitute from x, , to x,.

04-04-2006 Alexandre David, MVP'06

42

Technical Issues

= Non singular matrices.

= Numerical precision (is the solution
numerically stable) — permute columns.
= In particular no division by zero, thanks.

= Procedure known as Gaussian elimination with
partial pivoting.

43

. Gaussian Elimination

— Bl .

—_—t = = ek e e = = \D
REOEY el

procedure GAUSSIAN_ELIMINATION (4, 5, y)
begin
fork:=0ton — 1 do /* Outer loop */
begin
for j :=k+1ton—1do
Alk, jl:= Alk, j1/Alk, k]; /* Division step */
yIk] = blkl/Alk, kl;

Alk k] =1
fori . =k+1ton—1do
begin

for j ;:=k+1ton—1do

W=2n3/3

Ali, j1:= Ali, j1 — Ali, k] x Alk, j1; /* Elimination step */

il = bl — A0 &l = Vil
o
endfor; /* Line 9 */
endfor; /* Line 3 */
end GAUSSIAN_ELIMINATION

iParaIIeI Gaussian Elimination

= 1-D partitioning:
= 1 process/row.
= Process j computes A[*,j].
= Cost (+communication) = ©(r*logn) not cost
optimal.
= All processes work on the same iteration.

= k+1 iteration starts when kt" iteration is
complete.

« Improve: pipelined/asynchronous version.

45

Pipelined Version

DI AR A S

—_— e et ek e e e e \D
NN kRN = O

procedure GAUSSIAN_ELIMINATION (4, b, y)

begin

fork:=0ton — 1 do /* Outer loop */

begin
for j .=k+1ton —1do

Alk, jl:= Alk, j1/Alk, k]; /* Division step */

vik] := blkl/ Alk, kI,

forwards & does not wait.

Alk, k] : = 1; Pk
fori:=k+1ton—1do
begin

for j :=k —|—M

P:s forward & do not wait.

bli] := bli] — Ali, k] x y[k];
Ali, k] :=0;
endfor; /* Line 9 */
endfor; /* Line 3 */
end GAUSSIAN_ELIMINATION

Ali, jl:= Ali, j1 — Ali, k] x Alk, jl; /* Elimination step */

Pipelined Gaussian Elimination

= No logn for communication (no broadcast)
and the rest of the computations are the

Same.

= The pipelined version is cost-optimal.

= Fewer processes:

= Block 1-D partitioning,
idle processes (load ba

= Cyclic 1-D partitioning

oss of efficiency due to
ance problem).

Detter.

47

Gaussian Elimination — 2-D
iPartitioning

= Similar as before.
= Pipelined version cost-optimal.
= More scalable than 1-D.

48

iFinaIIy Back-Substitution

begin

begin
x[k] := ylkl;

procedure BACK_SUBSTITUTION (U, x, y)

for k :=n — 1 downto O do /* Main loop */

fori ;= k — 1 downto O do
vIi]:= yli] — x[k] x Uli, k];

endfor;
end BACK_SUBSTITUTION

Sl e AR B e e

Algorithm 8.5 A serial algorithm for back-substity
entries of the principal diagonal equal to one, and all

Intrinsically serial algorithm.

Pipelined parallel version not
cost optimal.

Does not matter because of

lower order of magnitude.

49

