
Dense Matrix Algorithms
(Chapter 8)

Alexandre David
B2-206

04-04-2006 Alexandre David, MVP'06 2

Dense Matrix Algorithm
Dense or full matrices: few known zeros.

Other algorithms for sparse matrix.

Square matrices for pedagogical purposes
only – can be generalized.
Natural to have data decomposition.

3.2.2 input/output/intermediate data.
3.4.1 mapping schemes based on data
partitioning.

04-04-2006 Alexandre David, MVP'06 3

Today
Matrix*Vector
Matrix*Matrix
Solving systems of linear equations.

04-04-2006 Alexandre David, MVP'06 4

Matrix*Vector – Recall

A x y

∑
=

=
n

k
kiki xay

1

Serial algorithm:
n2 multiplications and
addition.

W = n2

04-04-2006 Alexandre David, MVP'06 5

Matrix*Matrix – Recall

A B C

∑
=

=
n

k
kjikij bac

1

Serial algorithm:
n3 multiplications and
addition.

W = n3

04-04-2006 Alexandre David, MVP'06 6

Matrix*Vector – Serial Algorithm

∑
=

=
n

k
kiki xay

1

procedure MAT_Vec(A,x,y)
for i := 0 to n-1 do

y[i] := 0
for k := 0 to n-1 do

y[i] := y[i] + A[i,k]*x[k]
done

done
endproc

How to parallelize?

04-04-2006 Alexandre David, MVP'06 7

Matrix*Matrix – Serial Algorithm

∑
=

=
n

k
kjikij bac

1

procedure MAT_MULT(A,B,C)
for i := 0 to n-1 do

for j := 0 to n-1 do
C[i,j] := 0
for k := 0 to n-1 do

C[i,j] := C[i,j] + A[i,k]*B[k,j]
done

done
done

endproc

How to parallelize?

04-04-2006 Alexandre David, MVP'06 8

Matrix*Vector – Row-wise 1-D
Partitioning
Initial distribution:

Each process has a row of the n*n matrix.
Each process has an element of the n*1
vector.
Each process is responsible for computing one
element of the result.

04-04-2006 Alexandre David, MVP'06 9

Matrix*Vector – 1-D

A x y

n processes

But every process needs the entire vector
⇒ all-to-all broadcast.

04-04-2006 Alexandre David, MVP'06 10

All-to-All Broadcast

x

04-04-2006 Alexandre David, MVP'06 11

Parallel Computation

A x y

n processes

∑
=

=
n

k
kiki xay

1
in parallel on the n processes.

04-04-2006 Alexandre David, MVP'06 12

Example Matrix*Vector
(Program 6.4)

Partition on rows.

Allgather (All-to-all broadcast)

Multiply

04-04-2006 Alexandre David, MVP'06 13

Analysis
All-to-all broadcast & multiplications in
Θ(n).
For n processes W=n2=nTP.
⇒ The algorithm is cost-optimal.

A parallel system is cost-optimal iff
pTP=Θ(W).

04-04-2006 Alexandre David, MVP'06 14

Performance Metrics
Efficiency E=S/p.

Measure time spent in doing useful work.
Previous sum example: E = Θ(1/logn).

Cost C=pTP.
A.k.a. work or processor-time product.
Note: E=TS/C.
Cost optimal if E is a constant.

04-04-2006 Alexandre David, MVP'06 15

Using Fewer Processes
Brent’s scheduling principle: It’s possible.
Using p processes:

n/p rows per process.
Communication time = ts logp+tw(n/p)(p-1)
~ ts logp+twn = Θ(n).
Computation: n*n/p.
⇒ pTP = Θ(n2) = W ⇒ It is cost optimal.

04-04-2006 Alexandre David, MVP'06 16

Scalability – Recall
Efficiency increases with the size of the
problem.
Efficiency decreases with the number of
processors.
Scalability measures the ability to increase
speedup in function of p.

04-04-2006 Alexandre David, MVP'06 17

Isoefficiency Function
For scalable systems efficiency can be kept
constant if T0/W is kept constant.

For a target E

Keep this constant

Isoefficiency function

W=KT0(W,p)

04-04-2006 Alexandre David, MVP'06 18

Is Our Algorithm Scalable?
T0=pTP-W ⇒ T0=tsp logp+twnp.
We want to determine W=KT0. Try with
both terms separately:

W=Ktsp logp.
W=Ktwnp=n2 ⇒ W=(Ktwp)2.
Bound from concurrency: p=O(n) ⇒ W=Ω(p2).
W=Θ(p2) : asymptotic isoefficiency function.
Rate to increase the problem size (in function
of p) to maintain a fixed efficiency: p=Θ(n).

04-04-2006 Alexandre David, MVP'06 19

Matrix*Vector – 2-D
Matrix n*n partitioned on n*n processes.
Vector n*1 distributed in the last (or 1st

column).
Similarly we want fewer processes: blocks
of (n/√p)2 elements.

04-04-2006 Alexandre David, MVP'06 20

Matrix*Vector – 2-D

A x y

Processes in column i need element of the vector in row i.
1. Distribute on diagonal.
2. One-to-all broadcast on columns.
3. Multiplication.
4. All-to-one reduction (+).

04-04-2006 Alexandre David, MVP'06 21

Example Matrix*Vector
(Program 6.8)

Partition.

Row sub-topology.
Colum sub-topology.

Distribute vector.

Local multiplication.

Sum reduce on rows.

04-04-2006 Alexandre David, MVP'06 22

Which one is better? 1-D or 2-D?

04-04-2006 Alexandre David, MVP'06 23

Analysis
Communications:

one-to-one Θ(1) +
one-to-all broadcast Θ(logn) +
all-to-one reduction Θ(logn).

+ multiplications Θ(1).
TP=Θ(n2 logn) ⇒ not cost-optimal.
Brent’s scheduling principle?

04-04-2006 Alexandre David, MVP'06 24

Using Fewer Processes
Blocks of (n/√p)2 elements. Costs:

one to one in ts+twn/√p +
one-to-all broadcast in (ts+twn/√p) log√p +
all-to-one reduction in (ts+twn/√p) log√p +
computations in (n/√p)2.

Total ~ n2/p+ts logp+(twn/√p) logp.
pTP=Θ(n2) ⇒ cost-optimal.

04-04-2006 Alexandre David, MVP'06 25

Scalability Analysis
T0=pTP-W=ts logp+twn√p logp.
As before, isoefficiency analysis:

W=Ktsp logp.
W=Ktwn√p logp=n2 ⇒ W=(Ktw√p logp)2.
Bound from concurrency: p=O(n2) ⇒ W=Ω(p).
W=Θ(p log2p).

p=f(n)? p log2p=Θ(n2) … p=Θ(n2/ log2n).

04-04-2006 Alexandre David, MVP'06 26

Which One Is Better?
1-D: TP ~ n2/p+ts logp+twn.
2-D: TP ~ n2/p+ts logp+(twn/√p) logp.

1-D: W=Θ(p2).
2-D: W=Θ(p log2p).

Degree of concurrency…

04-04-2006 Alexandre David, MVP'06 27

Block Matrix*Matrix

procedure MAT_MULT(A,B,C)
for i := 0 to n-1 do

for j := 0 to n-1 do
C[i,j] := 0
for k := 0 to n-1 do

C[i,j] := C[i,j] + A[i,k]*B[k,j]
done

done
done

endproc

BLOCK_

q

q
q

q*q blocks of (n/q)*(n/q) submatrices.
Still n3 additions & multiplications.

04-04-2006 Alexandre David, MVP'06 28

A Simple Parallel Algorithm
Map the algorithm to p=q2 processes.
We need all A[i,k] and B[k,j] to compute
the C[i,j].
Steps:

All-to-all broadcast of A[i,k] on rows.
All-to-all broadcast of B[k,j] on columns.
Local multiplications.

04-04-2006 Alexandre David, MVP'06 29

Analysis
Costs:

all-to-all √p broadcasts of n2/p elements
= ts log√p+tw(n2/p)(√p-1) *2
+ computations = √p multiplications of
(n/√p)*(n/√p) matrices cost n3/p.
pTP=Θ(n3) for p=O(n2) ⇒ cost-optimal.
Isoefficiency W=Θ(p3/2).

Drawback: memory requirement in n2√p.
Better?

04-04-2006 Alexandre David, MVP'06 30

Cannon’s Algorithm
Idea: re-schedule computations to avoid
contention.

Processes on rows i hold a different A[i,k].
Processes on columns j hold a different B[k,j].
Rotate the matrices ⇒ we need only 2 sub-
matrices per process at any time.
⇒ memory efficient in O(n2).

04-04-2006 Alexandre David, MVP'06 31

Align A & B

04-04-2006 Alexandre David, MVP'06 32

04-04-2006 Alexandre David, MVP'06 33

04-04-2006 Alexandre David, MVP'06 34

Analysis
Costs:

2* (A & B) √p-single step shifts =
2(ts+twn2/p)√p +
√p multiplications of (n/√p)*(n/√p) sub-
matrices = n3/p.
Cost-optimal, same isoefficiency function as
previously.

04-04-2006 Alexandre David, MVP'06 35

The DNS Algorithm
3-D partitioning!
Cube with faces corresponding to A, B, C.
Internal nodes correspond to multiply
operations Pi,j,k.

Multiplications in time Θ(1).
Additions in time Θ(logn).
Communication…

Can use up to n3 processes – better
concurrency.

04-04-2006 Alexandre David, MVP'06 36

04-04-2006 Alexandre David, MVP'06 37

k

j

i

04-04-2006 Alexandre David, MVP'06 38

Communication Steps
Move the columns of A & rows of B.
One-to-all broadcast along j & i axis.
All-to-one reduction (+) along k axis.
Communication on groups of n processes,
in time Θ(logn).
Not cost optimal for n3 processes.

04-04-2006 Alexandre David, MVP'06 39

Brent’s Scheduling Principle

If a parallel computation consists of
k phases
taking time t1,t2,…,tk
using a1,a2,…,ak processors
in phases 1,2,…,k

then the computation can be done in time
O(a/p+t) using p processors where
t =sum(ti), a =sum(aiti).

Theorem

04-04-2006 Alexandre David, MVP'06 40

Look At One Dimension
k phases = logn.
ti = constant time.
ai = n/2,n/4,…,1 processors.
With q processors we can use time
O(logn+n/p).
Choose q=O(n/ logn) → time O(logn) and
this is optimal!

3-D: use p=O(n3/ log3n)

p=q3

04-04-2006 Alexandre David, MVP'06 41

Systems of Linear Equations

A x b

a0,0x0+a0,1x1+…+a0,n-1xn-1=b0,
…
an-1,0x0+an-1,1x1+…+an-1,n-1xn-1=bn-1

04-04-2006 Alexandre David, MVP'06 42

Solving Systems of Linear
Equations
Step 1: Reduce the original system to

Step2:
Solve & back-substitute from xn-1 to x0.

x yU

04-04-2006 Alexandre David, MVP'06 43

Technical Issues
Non singular matrices.
Numerical precision (is the solution
numerically stable) → permute columns.

In particular no division by zero, thanks.
Procedure known as Gaussian elimination with
partial pivoting.

04-04-2006 Alexandre David, MVP'06 44

Gaussian Elimination

W=2n3/3

04-04-2006 Alexandre David, MVP'06 45

Parallel Gaussian Elimination
1-D partitioning:

1 process/row.
Process j computes A[*,j].
Cost (+communication) = Θ(n3 logn) not cost
optimal.

All processes work on the same iteration.
k+1 iteration starts when kth iteration is
complete.
Improve: pipelined/asynchronous version.

04-04-2006 Alexandre David, MVP'06 46

Pipelined Version

Pk forwards & does not wait.

Pjs forward & do not wait.

04-04-2006 Alexandre David, MVP'06 47

Pipelined Gaussian Elimination
No logn for communication (no broadcast)
and the rest of the computations are the
same.
The pipelined version is cost-optimal.
Fewer processes:

Block 1-D partitioning, loss of efficiency due to
idle processes (load balance problem).
Cyclic 1-D partitioning better.

04-04-2006 Alexandre David, MVP'06 48

Gaussian Elimination – 2-D
Partitioning
Similar as before.
Pipelined version cost-optimal.
More scalable than 1-D.

04-04-2006 Alexandre David, MVP'06 49

Finally Back-Substitution

Intrinsically serial algorithm.
Pipelined parallel version not
cost optimal.
Does not matter because of
lower order of magnitude.

