Programming Shared Address

!'_ Space Platforms (cont.)

Alexandre David
B2-206

Today

= Finish thread synchronization.
» Effort for pthreads = synchronization.
« Effort for MPl = communication.

= OpenMP.
s Extra material on threads. ©

iThread Creation & Termination
#include <pthread.h>

int pthread_create(
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void* (*thread_function)(void *),
void *arg);

int pthread__join(
pthread_t thread,
void ** ptr);

28-03-2006 Alexandre David, MVP'06

il\/lutex-Lock

int pthread_mutex_init(
pthread_mutex_t *mutex_lock,
const pthread_mutextattr_t *lock_attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex_lock):;

int pthread_mutex_unlock(
pthread_mutex_t *mutex_lock);

28-03-2006 Alexandre David, MVP'06

iProducer—Consumer Example

= Shared buffer containing one task.
= No overwrite until cleared.
= No read until written.
= Pick one task at a time.

= Note: Better with semaphores in this case.

iExample

pthread_mutex_t task_queue_lock;
int task_available;

main() {

;r.élsk_available = 0;
pthread_mutex_init(&task_queue_lock, NULL);

}

28-03-2006 Alexandre David, MVP'06

Example (cont.)

void *producer(void *producer_thread_data) {

while (Idone()) {

inserted = O;
create_task(&my_task);
while (inserted == 0) {
pthread_mutex_lock(&task_queue_lock):;
if (tfask_available == 0) {
insert_into_queue(my_task):;
task_available = 1;

inserted = 1;

local

uoI193s [eand |

}
pthread_mutex_unlock(&task_queue_lock): }}}

28-03-2006 ~Alexandre David, MVP'06

Example (cont.)

28-03-2006

void *consumer(void *consumer_thread_data) {

while (Idone()) {
extracted = O;
while (extracted == 0) {
pthread_mutex_lock(&task_queue_lock);
if (task_available == 1) {
extract_from_queue(&my_task):;
task_available = O;
extracted = 1;

}

pthread_mutex_unlock(&task_queue_lock);

}

process_task(my_task);

}

} Alexandre David, MVP'06

Producer-Consumer with
iSemaphores — Recall

/ Semaphore S \

Pr'OdUCer' consumer
do Shared do

data

P(S):.

‘ PM :
write(&data); \ Semaphore M f M)

read(&data);
V(M) V(M);
loop loop

iOverhead of Locking

= Locks represent serialization points.
= Keep critical sections small.

= Previous example: create & process tasks
outside the section.

s Faster variant:

int pthread_mutex_trylock(
pthread_mutex_t *mutex_lock):;

Does not block, returns EBUSY If failed.

10

iExample

void *find_entries(void *start_pointer) {
/* This is the thread function */
struct database_record *next_record:;
int count;
current_pointer = start_pointer;

do {

next_record = find_next_entry(current_pointer);
count = output_record(next_record);
} while (count < requested_number_of_records);

11

iExampIe (cont.)

int output_record(struct database_record *record_ptr) {
Int count;
pthread_mutex_lock(&output_count_lock):;
output_count ++;
count = output_count;
pthread_mutex_unlock(&output_count_lock);
if (count <= requested_number_of_records) {

print_record(record_ptr);

}

return (count);

12

iReducing Locking Overhead

int output_record(struct database_record *record_ptr) {
Int count;

int lock_status = pthread_mutex_trylock(&output_count_lock);

if (lock_status == EBUSY) {
insert_into_local_list(record_ptr);
return(0);

} else {
count = output_count;
output_count += number_on_local_list + 1;
pthread_mutex_unlock(&output_count_lock):
print_records(record_ptr, local_list,

requested_number_of_records - count);

return(count + number_on_local_list + 1);

13

iTry-Iock

= T0 reduce idling overheads.
= Good If critical section can be delayed.

= Cheaper call.
= Although it is polling.

14

Condition Variables for
iSynchronization

= HOw monitors are implemented here.

One condition variable < one predicate.

= A condition variable Is always associated
with a mutex.

s Lock/unlock to test & walit, re-lock/unlock
to re-test.

= Similar concept of monitors In Java,
though implemented differently.

15

il\/lonltors

Monltor

28-03-2006

pthread_mutex_lock

pthread_cond_wait

enter & test

>

SUCCesSs

l failure

signaled — re-enter & test

N

pthread_cond_signal

pthread_mutex_unlock

Alexandre David, MVP'06

16

il\/lonitors in with Pthread

pthread_mutex_lock(&lock):;
while(lcondition) {

pthread_cond_wait(&predicate, &lock);
}

<critical section>

pthread_cond_signal(&predicate);
pthread_mutex_unlock(&lock);

28-03-2006 Alexandre David, MVP'06

17

il\/lonitors in Java

synchronized void foo() {

while(lcondition) wait();

<critical section>
notify();

28-03-2006 Alexandre David, MVP'06

18

iCaIIs

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond):
int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

19

iExampIe: Producer-Consumer

pthread_cond_t cond_queue_empty, cond_queue_ full;
pthread_mutex_t task_queue_cond_lock;
int task_available;

main() {

task_available = O;

pthread_init();
pthread_cond_init(&cond_queue_empty, NULL);
pthread_cond_init(&cond_queue_full, NULL);
pthread_mutex_init(&task_queue_cond_lock, NULL);
.. /™ create and join producer and consumer threads */

} 20

iExampIe: Producer-Consumer

void *producgr(void *producer_thread_data) {

task_available == 0 < cond_queue_empty
’rask_a\Lai lable == 1 < cond_queue_full

pthread_mutex_lock(&task_queue_cond_lock);
while (I(task_available == 0)) {
pthread_cond_wait(&cond_queue_empty,
&task_queue_cond_lock);
}

insert_into_queue();

task_available = 1;
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&task_queue_cond_lock); } }

28-03-2006 Alexandre David, MVP'06 —

iExampIe Producer-Consumer

/ L . | I 2 N FC

’rask available == 0 < cond _queue_empty
task_available == 1 < cond_queue_full).
while (I(task_available == 1)) {
pthread_cond_wait(&cond_queue_full,
&task_queue_cond_lock);

}

my_task = extract_from_queue();
task_available = O;
pthread_cond_signal(&cond_queue_empty):
pthread_mutex_unlock(&task_queue_cond_lock);
process_task(my_task):

28-03-2006 } } Alexandre David, MVP'06

iAttribute Objects

= To control threads and synchronization.
= Change scheduling policy...
= Specify mutex types.
= Types of mutexes:
= Normal — 1 lock per thread or deadlock.
= Recursive — several locks per thread OK.
= Error check — 1 lock per thread or error.

23

Thread Cancellation

= Stop a thread in the middle of its work.

= Function may return before the thread is
really stopped!

int pthread_cancel(pthread_t thread);

24

Composite Synchronization
iConstructs

= Pthread API offers (low-level) basic
functions.

= Higher level constructs built with basic
functions.

= Read-write locks.
= Barriers.

25

iRead-Write Locks

= Read often/write sometimes.
= Multiple reads/unigque write.
= Priority of writers over readers.

s Use condition variables.
= Count readers and writers.

= readers_proceed
< pending_writers == 0 && writer == 0.

= Writer_proceed
< writer == 0 && readers == 0.

26

iRead-Write Lock - RLocking

void mylib_rwlock_rlock(mylib_rwlock_1 *I) {
pthread_mutex_lock(&(l -> read_write_lock)):
while ((I -> pending_writers > 0) || (I -> writer > 0)) {
pthread_cond_wait(&(l -> readers_proceed),
&(l -> read_write_lock));
}
| -> readers ++;
pthread_mutex_unlock(&(l -> read_write_lock)):

}

28-03-2006 Alexandre David, MVP'06 27

iRead-Write Lock - WLocking

void mylib_rwlock_wlock(mylib_rwlock_t *I) {
pthread_mutex_lock(&(l -> read_write_lock)):
while ((I -> writer > 0) || (I -> readers > 0)) {
| -> pending_writers ++;
pthread_cond_wait(&(l -> writer_proceed),
&(l -> read_write_lock));
| -> pending_writers --;
}
| -> writer ++;
pthread_mutex_unlock(&(l -> read_write_lock)):

28

iRead-Write Lock - Unlocking

void mylib_rwlock_unlock(mylib_rwlock_t *I) {

pthread_mutex_lock(&(l -> read_write_lock));

if (I ->writer >0){
| -> writer = O;

} else if (I -> readers > 0) {
| -> readers --;

}

if ((I -> readers == 0) && (I -> pending_writers > 0)) {
pthread_cond_signal(&(l -> writer_proceed));

} else if (I -> readers > 0) {
pthread_cond_broadcast(&(l -> readers_proceed));

}
pthread_mutex_unlock(&(l -> read_write_lock)); }

29

iBug

= Example 7.7 has a bug.

= Test & update Iis not atomic as you can
see.

s FIX: Re-test after the write lock has been
obtained.

s BTW: The read-lock is useless here.

30

iBarriers

= Encoded with
= a counter,
= a mutex, and
= a condition variable.

s ldea:

= Count & block threads.

= Signhal them all.

31

iBarriers

void mylib_barrier(mylib_barrier_t *b, int num_threads) {

}

28-03-2006

pthread_mutex_lock(&(b -> count_lock)):;
b -> count ++;
if (b -> count == num_threads) { /* last thread */

b -> count = O;

pthread_cond_broadcast(&(b -> ok_to_proceed)):
} else {

pthread_cond_wait(&(b -> ok_to_proceed),

&(b -> count_lock));

}

pthread_mutex_unlock(&(b -> count_lock));

Alexandre David, MVP'06 32

50 T T | T I I
Log Barrier (1000, 32 procs) ——
e Linear Barrier (1000, 32 procs) -~
°r10(n) - :
35 F -
@ 30 .
'g -
S Smaller constant
g 5[1
Py because less
S 7 .
= a0k contention. i
15 ! -
V
10 .
5 F -
0 L]] 1]]]
0 20 40 60 80 100 120 140

Number of threads

Figure 7.3 Execution time of 1000 sequential and logarithmic barriers as a function of number of
threads on a 32 processor SGI Origin 2000.

OpenMP

= Directive based parallel programming.

= Support for concurrency, synchronization
... without explicit mutex, condition
variable ...

34

OpenMP Programming Model

= Uses the #pragma compiler directive.
= OpenMP compiler as pre-processor.

= Execute serially until
Hpragma omp parallel.

= Different clauses to specify
= conditional parallelization

= degree of concurrency
» data handling (local or shared).

35

int a, b;

main() {

-

| // serial segment
#pragma omp parallel num threads (8) private (a) shared (b)

[// parallel segment
-

| // rest of serial segment

Sample OpenMP program

int a, b;

main () {

[// serial segment

Code for (1 = 0; i < 8; 1++)
inserted by pthread create (....... , internal thread fn name, ...);
the OpenMP for (i = 0; i < 8; i++)
compiler pthread join (.......)5

[// rest of serial segment

}

volid *internal thread fn name (void *packaged argument) |
int a;

[// parallel segment

} Corresponding Pthreads translation

Figure 7.4 A sample OpenMP program along with its Pthreads translation that might be performed
by an OpenMP compiler.

iExample

#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num_threads(8)
{

sum = O;
#pragma omp for
for (i = O; i < npoints; i++) {
rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +
(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++,

iOpenI\/IP

= More directives:

= Assign iterations to thread (map data to
threads) — scheduling of loops.

= Synchronize (or not) accross multiple for
loops.

= Specify non-iterative parallel tasks — sections.

= Specify barriers, single thread execution —
barrier, single, master.

= Specify critical sections — critical.

38

iOpenI\/IP Library

= #include <omp.h>

= Access to OpenMP functions.

= Number of threads.
= Thread creation.
= Mutual exclusion.

39

iHints to Avoid Debugging

s Chapter 8 of Programming with POSIX
Threads.

= Hints to avoid mistakes.
= You will get a copy of the chapter.

40

iAvoiding Incorrect Code

= Avoid relying on thread inertia.
= Threads are asynchronous.
= Initialize data before starting threads.
= Never assume that a thread will wait for you.

= Never bet on thread race.

= Assume that at any point, any thread may go
to sleep for any period of time.

= No ordering exists between threads unless you
cause ordering.

41

iAvoiding Incorrect Code

= Scheduling is not the same as
synchronization.

= Never use sleep to synchronize.
= Never try to “tune” with timing.

= Beware of deadlocks & priority inversion.
= One predicate < one condition variable.

42

iAvoiding Performance Problems

s Beware of concurrent serialization.

= Use the right number of mutexes.

= 100 much mutex contention or too much
locking without contention?

= Avoid false sharing.

= And... don’t forget to compile like this:
gcc -Wall -o hello hello.c -Ipthread

43

