
1

Programming Shared Address
Space Platforms (cont.)

Alexandre David
B2-206

2

28-03-2006 Alexandre David, MVP'06 2

Today
Finish thread synchronization.

Effort for pthreads = synchronization.
Effort for MPI = communication.

OpenMP.
Extra material on threads. ☺

3

28-03-2006 Alexandre David, MVP'06 3

Thread Creation & Termination
#include <pthread.h>

int pthread_create(
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void* (*thread_function)(void *),
void *arg);

int pthread_join(
pthread_t thread,
void ** ptr);

4

28-03-2006 Alexandre David, MVP'06 4

Mutex-Lock

int pthread_mutex_init(
pthread_mutex_t *mutex_lock,
const pthread_mutextattr_t *lock_attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex_lock);

int pthread_mutex_unlock(
pthread_mutex_t *mutex_lock);

5

28-03-2006 Alexandre David, MVP'06 5

Producer-Consumer Example
Shared buffer containing one task.

No overwrite until cleared.
No read until written.
Pick one task at a time.

Note: Better with semaphores in this case.

6

28-03-2006 Alexandre David, MVP'06 6

Example

pthread_mutex_t task_queue_lock;
int task_available;
...
main() {

...
task_available = 0;
pthread_mutex_init(&task_queue_lock, NULL);
...

}

7

28-03-2006 Alexandre David, MVP'06 7

Example (cont.)
void *producer(void *producer_thread_data) {

...
while (!done()) {

inserted = 0;
create_task(&my_task);
while (inserted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 0) {

insert_into_queue(my_task);
task_available = 1;
inserted = 1;

}
pthread_mutex_unlock(&task_queue_lock); }}}

lo
ca

l

critical section

Why is this a bad example?

8

28-03-2006 Alexandre David, MVP'06 8

Example (cont.)
void *consumer(void *consumer_thread_data) {

…
while (!done()) {

extracted = 0;
while (extracted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 1) {

extract_from_queue(&my_task);
task_available = 0;
extracted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
process_task(my_task);

}
}

Do it better with semaphores.

9

28-03-2006 Alexandre David, MVP'06 9

Producer-Consumer with
Semaphores – Recall

Semaphore M

Semaphore S

Shared
data

Producer
do

…
P(S);
write(&data);
V(M);

loop

Consumer
do

…
P(M);
read(&data);
V(M);

loop

10

28-03-2006 Alexandre David, MVP'06 10

Overhead of Locking
Locks represent serialization points.

Keep critical sections small.
Previous example: create & process tasks
outside the section.

Faster variant:

int pthread_mutex_trylock(
pthread_mutex_t *mutex_lock);

Does not block, returns EBUSY if failed.

This variant is faster because there is no management of waiting queues and
waking up threads that are blocked.

11

28-03-2006 Alexandre David, MVP'06 11

Example

void *find_entries(void *start_pointer) {
/* This is the thread function */
struct database_record *next_record;
int count;
current_pointer = start_pointer;
do {

next_record = find_next_entry(current_pointer);
count = output_record(next_record);

} while (count < requested_number_of_records);
}

Find k matches in a list. The example is not fully correct.

12

28-03-2006 Alexandre David, MVP'06 12

Example (cont.)

int output_record(struct database_record *record_ptr) {
int count;
pthread_mutex_lock(&output_count_lock);
output_count ++;
count = output_count;
pthread_mutex_unlock(&output_count_lock);
if (count <= requested_number_of_records) {

print_record(record_ptr);
}
return (count);

}

Looks ok but if time of the previous loop and this section are comparable then
we have a terrible overhead.

13

28-03-2006 Alexandre David, MVP'06 13

Reducing Locking Overhead
int output_record(struct database_record *record_ptr) {

int count;
int lock_status = pthread_mutex_trylock(&output_count_lock);
if (lock_status == EBUSY) {

insert_into_local_list(record_ptr);
return(0);

} else {
count = output_count;
output_count += number_on_local_list + 1;
pthread_mutex_unlock(&output_count_lock);
print_records(record_ptr, local_list,

requested_number_of_records - count);
return(count + number_on_local_list + 1);

}
}

Example is not completely correct in fact (more entries searched than asked).
Better performance because the locking call is much faster and the number of
locked operations is reduced.
Very important: The lock must be released, and only when it was acquired.

14

28-03-2006 Alexandre David, MVP'06 14

Try-lock
To reduce idling overheads.
Good if critical section can be delayed.
Cheaper call.

Although it is polling.

15

28-03-2006 Alexandre David, MVP'06 15

Condition Variables for
Synchronization
How monitors are implemented here.
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

A condition variable is always associated
with a mutex.
Lock/unlock to test & wait, re-lock/unlock
to re-test.
Similar concept of monitors in Java,
though implemented differently.

One condition variable ⇔ one predicate.

Associate one condition to one predicate only.

16

28-03-2006 Alexandre David, MVP'06 16

Monitors

Monitor

Condition variable

enter & test

success

failure

signaled – re-enter & test

pthread_cond_wait

pthread_cond_signal

pthread_mutex_lock

pthread_mutex_unlock

In java:
synchronized void foo() {

if (!condition) wait();
…
notify();

}

17

28-03-2006 Alexandre David, MVP'06 17

Monitors in with Pthread

pthread_mutex_lock(&lock);
while(!condition) {

pthread_cond_wait(&predicate, &lock);
}
<critical section>
pthread_cond_signal(&predicate);
pthread_mutex_unlock(&lock);

Why do we have a loop on the condition variable?

18

28-03-2006 Alexandre David, MVP'06 18

Monitors in Java

synchronized void foo() {
while(!condition) wait();
<critical section>
notify();

}

19

28-03-2006 Alexandre David, MVP'06 19

Calls

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

There is variant pthread_cond_timedwait for a wait with time-out.

20

28-03-2006 Alexandre David, MVP'06 20

Example: Producer-Consumer
pthread_cond_t cond_queue_empty, cond_queue_full;
pthread_mutex_t task_queue_cond_lock;
int task_available;
…
main() {

…
task_available = 0;
pthread_init();
pthread_cond_init(&cond_queue_empty, NULL);
pthread_cond_init(&cond_queue_full, NULL);
pthread_mutex_init(&task_queue_cond_lock, NULL);
… /* create and join producer and consumer threads */

}

The example is overkill and is here only for pedagogical purposes.

21

28-03-2006 Alexandre David, MVP'06 21

Example: Producer-Consumer
void *producer(void *producer_thread_data) {

int inserted;
while (!done()) {

create_task();
pthread_mutex_lock(&task_queue_cond_lock);
while (!(task_available == 0)) {

pthread_cond_wait(&cond_queue_empty,
&task_queue_cond_lock);

}
insert_into_queue();
task_available = 1;
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&task_queue_cond_lock); } }

task_available == 0 ⇔ cond_queue_empty
task_available == 1 ⇔ cond_queue_full

22

28-03-2006 Alexandre David, MVP'06 22

Example: Producer-Consumer
void *consumer(void *consumer_thread_data) {

while (!done()) {
pthread_mutex_lock(&task_queue_cond_lock);
while (!(task_available == 1)) {

pthread_cond_wait(&cond_queue_full,
&task_queue_cond_lock);

}
my_task = extract_from_queue();
task_available = 0;
pthread_cond_signal(&cond_queue_empty);
pthread_mutex_unlock(&task_queue_cond_lock);
process_task(my_task);

} }

task_available == 0 ⇔ cond_queue_empty
task_available == 1 ⇔ cond_queue_full

23

28-03-2006 Alexandre David, MVP'06 23

Attribute Objects
To control threads and synchronization.

Change scheduling policy…
Specify mutex types.

Types of mutexes:
Normal – 1 lock per thread or deadlock.
Recursive – several locks per thread OK.
Error check – 1 lock per thread or error.

24

28-03-2006 Alexandre David, MVP'06 24

Thread Cancellation
Stop a thread in the middle of its work.
Function may return before the thread is
really stopped!

int pthread_cancel(pthread_t thread);

25

28-03-2006 Alexandre David, MVP'06 25

Composite Synchronization
Constructs
Pthread API offers (low-level) basic
functions.
Higher level constructs built with basic
functions.

Read-write locks.
Barriers.

26

28-03-2006 Alexandre David, MVP'06 26

Read-Write Locks
Read often/write sometimes.

Multiple reads/unique write.
Priority of writers over readers.

Use condition variables.
Count readers and writers.
readers_proceed
⇔ pending_writers == 0 && writer == 0.
writer_proceed
⇔ writer == 0 && readers == 0.

27

28-03-2006 Alexandre David, MVP'06 27

Read-Write Lock - RLocking

void mylib_rwlock_rlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l -> read_write_lock));
while ((l -> pending_writers > 0) || (l -> writer > 0)) {

pthread_cond_wait(&(l -> readers_proceed),
&(l -> read_write_lock));

}
l -> readers ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

Notice that there is no signal here.

28

28-03-2006 Alexandre David, MVP'06 28

Read-Write Lock - WLocking

void mylib_rwlock_wlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l -> read_write_lock));
while ((l -> writer > 0) || (l -> readers > 0)) {

l -> pending_writers ++;
pthread_cond_wait(&(l -> writer_proceed),

&(l -> read_write_lock));
l -> pending_writers --;

}
l -> writer ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

There is a mistake in the book for the while loop. Either you move the l-
>pending_writers-- inside the while loop, which is logical w.r.t. “pending”
writers, or you move the l->pending_writers++ outside the loop. Keeping it
inside is utterly incorrect.

29

28-03-2006 Alexandre David, MVP'06 29

Read-Write Lock - Unlocking
void mylib_rwlock_unlock(mylib_rwlock_t *l) {

pthread_mutex_lock(&(l -> read_write_lock));
if (l -> writer > 0) {

l -> writer = 0;
} else if (l -> readers > 0) {

l -> readers --;
}
if ((l -> readers == 0) && (l -> pending_writers > 0)) {

pthread_cond_signal(&(l -> writer_proceed));
} else if (l -> readers > 0) {

pthread_cond_broadcast(&(l -> readers_proceed));
}
pthread_mutex_unlock(&(l -> read_write_lock)); }

30

28-03-2006 Alexandre David, MVP'06 30

Bug
Example 7.7 has a bug.
Test & update is not atomic as you can
see.
Fix: Re-test after the write lock has been
obtained.
BTW: The read-lock is useless here.

31

28-03-2006 Alexandre David, MVP'06 31

Barriers
Encoded with

a counter,
a mutex, and
a condition variable.

Idea:
Count & block threads.
Signal them all.

32

28-03-2006 Alexandre David, MVP'06 32

Barriers

void mylib_barrier(mylib_barrier_t *b, int num_threads) {
pthread_mutex_lock(&(b -> count_lock));
b -> count ++;
if (b -> count == num_threads) { /* last thread */

b -> count = 0;
pthread_cond_broadcast(&(b -> ok_to_proceed));

} else {
pthread_cond_wait(&(b -> ok_to_proceed),

&(b -> count_lock));
}
pthread_mutex_unlock(&(b -> count_lock));

}

Performance bottleneck: The mutex serializes all the threads, execution time is
O(n). Possible to improve by grouping threads by pairs.

33

28-03-2006 Alexandre David, MVP'06 33

O (n)

Smaller constant
because less
contention.

34

28-03-2006 Alexandre David, MVP'06 34

OpenMP
Directive based parallel programming.
Support for concurrency, synchronization
… without explicit mutex, condition
variable …

35

28-03-2006 Alexandre David, MVP'06 35

OpenMP Programming Model
Uses the #pragma compiler directive.
OpenMP compiler as pre-processor.
Execute serially until
#pragma omp parallel.
Different clauses to specify

conditional parallelization
degree of concurrency
data handling (local or shared).

36

28-03-2006 Alexandre David, MVP'06 36

37

28-03-2006 Alexandre David, MVP'06 37

Example
#pragma omp parallel default(private) shared (npoints) \

reduction(+: sum) num_threads(8)
{

sum = 0;
#pragma omp for
for (i = 0; i < npoints; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}
}

It is simple to convert many serial programs into OpenMP-based threaded
programs.

38

28-03-2006 Alexandre David, MVP'06 38

OpenMP
More directives:

Assign iterations to thread (map data to
threads) – scheduling of loops.
Synchronize (or not) accross multiple for
loops.
Specify non-iterative parallel tasks – sections.
Specify barriers, single thread execution –
barrier, single, master.
Specify critical sections – critical.

39

28-03-2006 Alexandre David, MVP'06 39

OpenMP Library
#include <omp.h>
Access to OpenMP functions.

Number of threads.
Thread creation.
Mutual exclusion.

40

28-03-2006 Alexandre David, MVP'06 40

Hints to Avoid Debugging
Chapter 8 of Programming with POSIX
Threads.
Hints to avoid mistakes.
You will get a copy of the chapter.

41

28-03-2006 Alexandre David, MVP'06 41

Avoiding Incorrect Code
Avoid relying on thread inertia.

Threads are asynchronous.
Initialize data before starting threads.
Never assume that a thread will wait for you.

Never bet on thread race.
Assume that at any point, any thread may go
to sleep for any period of time.
No ordering exists between threads unless you
cause ordering.

42

28-03-2006 Alexandre David, MVP'06 42

Avoiding Incorrect Code
Scheduling is not the same as
synchronization.

Never use sleep to synchronize.
Never try to “tune” with timing.

Beware of deadlocks & priority inversion.
One predicate ⇔ one condition variable.

43

28-03-2006 Alexandre David, MVP'06 43

Avoiding Performance Problems
Beware of concurrent serialization.
Use the right number of mutexes.

Too much mutex contention or too much
locking without contention?

Avoid false sharing.

And… don’t forget to compile like this:
gcc –Wall –o hello hello.c -lpthread

