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Today
Finish thread synchronization.

Effort for pthreads = synchronization.
Effort for MPI = communication.

OpenMP.
Extra material on threads. ☺
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Thread Creation & Termination
#include <pthread.h>

int pthread_create(
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void* (*thread_function)(void *),
void *arg);

int pthread_join(
pthread_t thread,
void ** ptr);
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Mutex-Lock

int pthread_mutex_init(
pthread_mutex_t *mutex_lock,
const pthread_mutextattr_t *lock_attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex_lock);

int pthread_mutex_unlock(
pthread_mutex_t *mutex_lock);
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Producer-Consumer Example
Shared buffer containing one task.

No overwrite until cleared.
No read until written.
Pick one task at a time.

Note: Better with semaphores in this case.
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Example

pthread_mutex_t task_queue_lock; 
int task_available; 
... 
main() { 

... 
task_available = 0; 
pthread_mutex_init(&task_queue_lock, NULL); 
... 

}
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Example (cont.)
void *producer(void *producer_thread_data) { 

...
while (!done()) { 

inserted = 0; 
create_task(&my_task); 
while (inserted == 0) { 

pthread_mutex_lock(&task_queue_lock); 
if (task_available == 0) { 

insert_into_queue(my_task); 
task_available = 1; 
inserted = 1; 

} 
pthread_mutex_unlock(&task_queue_lock); }}}

lo
ca

l

critical section

Why is this a bad example?
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Example (cont.)
void *consumer(void *consumer_thread_data) {

…
while (!done()) {

extracted = 0;
while (extracted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 1) {

extract_from_queue(&my_task);
task_available = 0;
extracted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
process_task(my_task);

}
}

Do it better with semaphores.
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Producer-Consumer with 
Semaphores – Recall

Semaphore M

Semaphore S

Shared
data

Producer
do

…
P(S);
write(&data);
V(M);

loop

Consumer
do

…
P(M);
read(&data);
V(M);

loop
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Overhead of Locking
Locks represent serialization points.

Keep critical sections small.
Previous example: create & process tasks 
outside the section.

Faster variant:

int pthread_mutex_trylock(
pthread_mutex_t *mutex_lock);

Does not block, returns EBUSY if failed.

This variant is faster because there is no management of waiting queues and 
waking up threads that are blocked.
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Example

void *find_entries(void *start_pointer) { 
/* This is the thread function */ 
struct database_record *next_record; 
int count; 
current_pointer = start_pointer; 
do { 

next_record = find_next_entry(current_pointer); 
count = output_record(next_record); 

} while (count < requested_number_of_records); 
} 

Find k matches in a list. The example is not fully correct.
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Example (cont.)

int output_record(struct database_record *record_ptr) {
int count;
pthread_mutex_lock(&output_count_lock);
output_count ++;
count = output_count;
pthread_mutex_unlock(&output_count_lock);
if (count <= requested_number_of_records) {

print_record(record_ptr);
}
return (count);

}

Looks ok but if time of the previous loop and this section are comparable then 
we have a terrible overhead.
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Reducing Locking Overhead
int output_record(struct database_record *record_ptr) { 

int count;
int lock_status = pthread_mutex_trylock(&output_count_lock); 
if (lock_status == EBUSY) { 

insert_into_local_list(record_ptr); 
return(0); 

} else { 
count = output_count; 
output_count += number_on_local_list + 1; 
pthread_mutex_unlock(&output_count_lock); 
print_records(record_ptr, local_list,

requested_number_of_records - count); 
return(count + number_on_local_list + 1); 

} 
}

Example is not completely correct in fact (more entries searched than asked).
Better performance because the locking call is much faster and the number of 
locked operations is reduced.
Very important: The lock must be released, and only when it was acquired.
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Try-lock
To reduce idling overheads.
Good if critical section can be delayed.
Cheaper call.

Although it is polling.
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Condition Variables for 
Synchronization
How monitors are implemented here.
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

A condition variable is always associated 
with a mutex.
Lock/unlock to test & wait, re-lock/unlock 
to re-test.
Similar concept of monitors in Java, 
though implemented differently.

One condition variable ⇔ one predicate.

Associate one condition to one predicate only.
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Monitors

Monitor

Condition variable

enter & test

success

failure

signaled – re-enter & test

pthread_cond_wait

pthread_cond_signal

pthread_mutex_lock

pthread_mutex_unlock

In java:
synchronized void foo() {

if (!condition) wait();
…
notify();

}
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Monitors in with Pthread

pthread_mutex_lock(&lock);
while(!condition) {

pthread_cond_wait(&predicate, &lock);
}
<critical section>
pthread_cond_signal(&predicate);
pthread_mutex_unlock(&lock);

Why do we have a loop on the condition variable?
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Monitors in Java

synchronized void foo() {
while(!condition) wait();
<critical section>
notify();

}
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Calls

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex); 

int pthread_cond_signal(pthread_cond_t *cond); 

int pthread_cond_broadcast(pthread_cond_t *cond); 

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr); 

int pthread_cond_destroy(pthread_cond_t *cond);

There is variant pthread_cond_timedwait for a wait with time-out.
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Example: Producer-Consumer
pthread_cond_t cond_queue_empty, cond_queue_full; 
pthread_mutex_t task_queue_cond_lock; 
int task_available; 
…
main() { 

…
task_available = 0; 
pthread_init(); 
pthread_cond_init(&cond_queue_empty, NULL); 
pthread_cond_init(&cond_queue_full, NULL); 
pthread_mutex_init(&task_queue_cond_lock, NULL); 
… /* create and join producer and consumer threads */ 

} 

The example is overkill and is here only for pedagogical purposes.
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Example: Producer-Consumer
void *producer(void *producer_thread_data) {

int inserted;
while (!done()) {

create_task();
pthread_mutex_lock(&task_queue_cond_lock);
while (!(task_available == 0)) {

pthread_cond_wait(&cond_queue_empty,
&task_queue_cond_lock);

}
insert_into_queue();
task_available = 1;
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&task_queue_cond_lock); } }

task_available == 0 ⇔ cond_queue_empty
task_available == 1 ⇔ cond_queue_full



22

28-03-2006 Alexandre David, MVP'06 22

Example: Producer-Consumer
void *consumer(void *consumer_thread_data) {

while (!done()) {
pthread_mutex_lock(&task_queue_cond_lock);
while (!(task_available == 1))  {

pthread_cond_wait(&cond_queue_full,
&task_queue_cond_lock);

}
my_task = extract_from_queue();
task_available = 0;
pthread_cond_signal(&cond_queue_empty);
pthread_mutex_unlock(&task_queue_cond_lock);
process_task(my_task);

} }

task_available == 0 ⇔ cond_queue_empty
task_available == 1 ⇔ cond_queue_full
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Attribute Objects
To control threads and synchronization.

Change scheduling policy…
Specify mutex types.

Types of mutexes:
Normal – 1 lock per thread or deadlock.
Recursive – several locks per thread OK.
Error check – 1 lock per thread or error.
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Thread Cancellation
Stop a thread in the middle of its work.
Function may return before the thread is 
really stopped!

int pthread_cancel(pthread_t thread);
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Composite Synchronization 
Constructs
Pthread API offers (low-level) basic 
functions.
Higher level constructs built with basic 
functions.

Read-write locks.
Barriers.
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Read-Write Locks
Read often/write sometimes.

Multiple reads/unique write.
Priority of writers over readers.

Use condition variables.
Count readers and writers.
readers_proceed
⇔ pending_writers == 0 && writer == 0.
writer_proceed
⇔ writer == 0 && readers == 0.
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Read-Write Lock - RLocking

void mylib_rwlock_rlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l -> read_write_lock));
while ((l -> pending_writers > 0) || (l -> writer > 0)) {

pthread_cond_wait(&(l -> readers_proceed),
&(l -> read_write_lock));

}
l -> readers ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

Notice that there is no signal here.
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Read-Write Lock - WLocking

void mylib_rwlock_wlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l -> read_write_lock));
while ((l -> writer > 0) || (l -> readers > 0)) {

l -> pending_writers ++;
pthread_cond_wait(&(l -> writer_proceed),

&(l -> read_write_lock));
l -> pending_writers --;

}
l -> writer ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

There is a mistake in the book for the while loop. Either you move the l-
>pending_writers-- inside the while loop, which is logical w.r.t. “pending”
writers, or you move the l->pending_writers++ outside the loop. Keeping it 
inside is utterly incorrect.
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Read-Write Lock - Unlocking
void mylib_rwlock_unlock(mylib_rwlock_t *l) { 

pthread_mutex_lock(&(l -> read_write_lock));
if (l -> writer > 0) {

l -> writer = 0;
} else if (l -> readers > 0) {

l -> readers --;
}
if ((l -> readers == 0) && (l -> pending_writers > 0)) {

pthread_cond_signal(&(l -> writer_proceed));
} else if (l -> readers > 0) {

pthread_cond_broadcast(&(l -> readers_proceed));
}
pthread_mutex_unlock(&(l -> read_write_lock)); }
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Bug
Example 7.7 has a bug.
Test & update is not atomic as you can 
see.
Fix: Re-test after the write lock has been 
obtained.
BTW: The read-lock is useless here.
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Barriers
Encoded with

a counter,
a mutex, and
a condition variable.

Idea:
Count & block threads.
Signal them all.
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Barriers

void mylib_barrier(mylib_barrier_t *b, int num_threads) {
pthread_mutex_lock(&(b -> count_lock));
b -> count ++;
if (b -> count == num_threads) { /* last thread */

b -> count = 0;
pthread_cond_broadcast(&(b -> ok_to_proceed));

} else {
pthread_cond_wait(&(b -> ok_to_proceed),

&(b -> count_lock));
}
pthread_mutex_unlock(&(b -> count_lock));

}

Performance bottleneck: The mutex serializes all the threads, execution time is 
O(n). Possible to improve by grouping threads by pairs.
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O (n )

Smaller constant
because less
contention.
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OpenMP
Directive based parallel programming.
Support for concurrency, synchronization 
… without explicit mutex, condition 
variable …
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OpenMP Programming Model
Uses the #pragma compiler directive.
OpenMP compiler as pre-processor.
Execute serially until
#pragma omp parallel.
Different clauses to specify

conditional parallelization
degree of concurrency
data handling (local or shared).
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Example
#pragma omp parallel default(private) shared (npoints) \

reduction(+: sum) num_threads(8)
{

sum = 0;
#pragma omp for
for (i = 0; i < npoints; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}
}

It is simple to convert many serial programs into OpenMP-based threaded 
programs.
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OpenMP
More directives:

Assign iterations to thread (map data to 
threads) – scheduling of loops.
Synchronize (or not) accross multiple for 
loops.
Specify non-iterative parallel tasks – sections.
Specify barriers, single thread execution –
barrier, single, master.
Specify critical sections – critical.
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OpenMP Library
#include <omp.h>
Access to OpenMP functions.

Number of threads.
Thread creation.
Mutual exclusion.
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Hints to Avoid Debugging
Chapter 8 of Programming with POSIX 
Threads.
Hints to avoid mistakes.
You will get a copy of the chapter.



41

28-03-2006 Alexandre David, MVP'06 41

Avoiding Incorrect Code
Avoid relying on thread inertia.

Threads are asynchronous.
Initialize data before starting threads.
Never assume that a thread will wait for you.

Never bet on thread race.
Assume that at any point, any thread may go 
to sleep for any period of time.
No ordering exists between threads unless you 
cause ordering.
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Avoiding Incorrect Code
Scheduling is not the same as 
synchronization.

Never use sleep to synchronize.
Never try to “tune” with timing.

Beware of deadlocks & priority inversion.
One predicate ⇔ one condition variable.
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Avoiding Performance Problems
Beware of concurrent serialization.
Use the right number of mutexes.

Too much mutex contention or too much 
locking without contention?

Avoid false sharing.

And… don’t forget to compile like this:
gcc –Wall –o hello hello.c -lpthread


