
Programming Shared Address
Space Platforms (Chapter 7)

Alexandre David
B2-206

21-03-2006 Alexandre David, MVP'06 2

Today
Thread Basics (7.1 – 7.4).
Synchronization Primitives in Pthreads
(7.5).

21-03-2006 Alexandre David, MVP'06 3

Comparison
Explicit parallel programming: specify tasks
and interactions.

Communication of intermediate results.
Synchronization.

MPI: focus on communication.
Shared memory: focus on synchronization.

21-03-2006 Alexandre David, MVP'06 4

Programming Models
Concurrency supported by:

Processes – private data unless otherwise
specified.
Threads – shared memory, lightweight.
Directive based programming – concurrency
specified as high level compiler directive,
OpenMP.

See OS course.

21-03-2006 Alexandre David, MVP'06 5

Threads Basics
All memory is globally accessible.
But the stack is considered local.

In practice both local (private) and global
(shared) memory.
Recall that memory is physically distributed
and local accesses are faster.

21-03-2006 Alexandre David, MVP'06 6

Why Threads?
Software portability – applications
developed and run without modification on
multi-processor machines.
Latency hiding – recall chapter 2.
Implicit scheduling and load balancing –
specify many tasks and let the system map
and schedule them.
Ease of programming, widespread.

21-03-2006 Alexandre David, MVP'06 7

The POSIX Thread API
It is a standard API (like MPI).

Supported by most vendors.

General concepts applicable to other
thread APIs (java threads, NT threads,
etc).
Low level functions, API is missing high
level constructs, e.g., no collective
communication like in MPI.

21-03-2006 Alexandre David, MVP'06 8

Thread Creation

#include <pthread.h>

int pthread_create(
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void* (*thread_function)(void *),
void *arg);

Header.

Identifier.

NULL for
default.

Function to call with its argument.

21-03-2006 Alexandre David, MVP'06 9

Waiting for Termination

int pthread_join(
pthread_t thread,
void ** ptr);

Thread to wait for.

Threads call pthread_exit(value).
The caller can read a (void*) at address ptr.

The creator process/thread calls this function
to wait for its spawned threads.

21-03-2006 Alexandre David, MVP'06 10

Example: Compute PI
#include <pthread.h>
...
main() {

…
pthread_t p_threads[MAX_THREADS];
pthread_attr_t attr;
pthread_attr_init (&attr);
for (i=0; i< num_threads; i++) {

hits[i] = i;
pthread_create(&p_threads[i], &attr, compute_pi,

(void *) &hits[i]);
}
for (i=0; i< num_threads; i++) {

pthread_join(p_threads[i], NULL);
total_hits += hits[i];

}

21-03-2006 Alexandre David, MVP'06 11

Example: Compute PI
void *compute_pi (void *s) {

int seed, i;
double rand_no_x, rand_no_y;
int *hit_pointer = (int *) s;
seed = *hit_pointer;
int local_hits = 0;
for (i = 0; i < sample_points_per_thread; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
local_hits ++;

seed *= i;
}
*hit_pointer = local_hits;
pthread_exit(0);

}

To return the result.
Used to pass seed.

Count hits
in the circle.

Return result.

21-03-2006 Alexandre David, MVP'06 12

Performance if
• change to global count,
• execute on 4 processor machine.

This shows false sharing (chapter 2).

21-03-2006 Alexandre David, MVP'06 13

Race Condition
Need to synchronize if a shared variable is
updated concurrently.

if (my_cost < best_cost) best_cost = my_cost;
Race condition.
Can give wrong (inconsistent) result.
We want this to be atomic – but we can’t so
this is a critical segment: Must be executed by
only one thread at a time.

21-03-2006 Alexandre David, MVP'06 14

Mutex-Locks
Implement critical section.
Mutex-locks can be locked or unlocked.

Locking is atomic.
Threads must acquire a lock to enter a critical
section.
Threads must release their locks when leaving
a critical section.

Locks represent serialization points. Too
many locks will decrease performance.

21-03-2006 Alexandre David, MVP'06 15

Mutex-Lock

int pthread_mutex_init(
pthread_mutex_t *mutex_lock,
const pthread_mutextattr_t *lock_attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex_lock);

int pthread_mutex_unlock(
pthread_mutex_t *mutex_lock);

21-03-2006 Alexandre David, MVP'06 16

Example Revisited
pthread_mutex_t minimum_value_lock;
...
main() {

...
pthread_mutex_init(&minimum_value_lock, NULL);

....
}
void *find_min(void *list_ptr) {

...
pthread_mutex_lock(&minimum_value_lock);
if (my_min < minimum_value) minimum_value = my_min;
pthread_mutex_unlock(&minimum_value_lock);
…

}

