Programming Shared Address

!'_ Space Platforms (Chapter 7)

Alexandre David
B2-206



iToday

= Thread Basics (7.1 — 7.4).

= Synchronization Primitives in Pthreads
(7.5).




Comparison

= Explicit parallel programming: specify tasks
and interactions.
= Communication of intermediate results.
= Synchronization.

= MPI: focus on communication.
= Shared memory: focus on synchronization.



iProgramming Models

= Concurrency supported by:

= Processes — private data unless otherwise
specified.

= Threads — shared memory, lightweight.

= Directive based programming — concurrency
specified as high level compiler directive,
OpenMP.

s See OS course.

21-03-2006 Alexandre David, MVP'06



iTh reads Basics

= All memory is globally accessible.

s But the stack is considered local.

= In practice both local (private) and global
(shared) memory.

= Recall that memory is physically distributed
and local accesses are faster.



Why Threads?

= Software portability — applications
developed and run without modification on
multi-processor machines.

= Latency hiding — recall chapter 2.

= Implicit scheduling and load balancing —
specify many tasks and let the system map
and schedule them.

= Ease of programming, widespread.



The POSIX Thread API

= It Is a standard API (like MPI).
= Supported by most vendors.

= General concepts applicable to other

thread APIs (Java threads, NT threads,
etc).

= Low level functions, API Is missing high
level constructs, e.g., no collective
communication like in MPI.



iTh read Creation

Header.

#include <pthread.h> <

int pthread_create(

pthread_t *thread_handle, -«

const pthread_attr_t *attribute,

|dentifier.

void* (*thread_function)(void *),
void *arg);

NULL for
default.

Function to call with its argument.

21-03-2006 Alexandre David, MVP'06




iWaiting for Termination

int pthread__join(
pthread_t thread, < Thread to wait for.

void ** ptr);

1

Threads call pthread_exit(value).
The caller can read a (void*) at address ptr.

The creator process/thread calls this function
to wait for its spawned threads.




iExample: Compute Pl

#include <pthread.h>
main() {

pthread_t p_threadsf MAX_THREADS]:
pthread_attr_t attr;
pthread_attr_init (&attr);
for (i=0; i« num_threads; i++) {
hits[i] = i;
pthread_create(&p_threads[i], &attr, compute_pi,
(void *) &hits[i]);
}
for (i=0; i« num_threads; i++) {
pthread_join(p_threads[i], NULL);
total_hits += hits[i];
21-03-2006  } Alexandre David, MVP'06 10



‘LExampIe: Compute Pl

void *compute_pi (void *s) {

int seed, i;

double rand_no_x, rand_no_y;

int "hil pointer =(int ") & To return the result.
seed = *hit_pointer; Used to pass seed.

int local_hits = O;

for (i = O; i < sample_points_per_thread; i++) {
rand_no_x =(double)(rand_r(&seed))/(double)((2«<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2¢<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

Count hits (rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
in the circle. local_hits ++;
seed *= i;
}
*hit_pointer = local_hits; Return result.

pthread_exit(0);



e |

Time

4 F

Performance If
e change to global count,

| |
"optimal" —
"local" ----
"spaced_1" ----
"spaced_16" -
"spaced 32" --- 4

logarithm of number of threads

Figure 7.2 Execution time of the compute_pi program as a function of number of threads.

12



Race Condition

= Need to synchronize if a shared variable Is
updated concurrently.
= if (my_cost < best_cost) best_cost = my_cost;
= Race condition.
= Can give wrong (inconsistent) result.

= We want this to be atomic — but we can’t so
this is a critical segment: Must be executed by
only one thread at a time.

13



il\/lutex—Locks

= Implement critical section.

s Mutex-locks can be locked or unlocked.
= Locking Is atomic.

= Threads must acquire a lock to enter a critical
section.

» Threads must release their locks when leaving
a critical section.

= Locks represent serialization points. Too
many locks will decrease performance.

14



il\/lutex-Lock

int pthread_mutex_init(
pthread_mutex_t *mutex_lock,
const pthread_mutextattr_t *lock_attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex_lock):;

int pthread_mutex_unlock(
pthread_mutex_t *mutex_lock):;

15



Example Revisited

21-03-2006

pthread_mutex_t minimum_value_lock;
main() {
pthread_mutex_init(&minimum_value_lock, NULL);

}
void *find_min(void *list_ptr) {

.F;.Tht”ead_mu’rex_lock(&mi nimum_value_lock);

if (my_min < minimum_value) minimum_value = my_min;

pthread_mutex_unlock(&minimum_value_lock):

}

Alexandre David, MVP'06

16



