
1

Programming Shared Address
Space Platforms (Chapter 7)

Alexandre David
B2-206

This is about pthreads.

2

21-03-2006 Alexandre David, MVP'06 2

Today
Thread Basics (7.1 – 7.4).
Synchronization Primitives in Pthreads
(7.5).

3

21-03-2006 Alexandre David, MVP'06 3

Comparison
Explicit parallel programming: specify tasks
and interactions.

Communication of intermediate results.
Synchronization.

MPI: focus on communication.
Shared memory: focus on synchronization.

Programming paradigms for shared address space machines focus on
constructs for expressing concurrency and synchronization. Communication in
shared memory programming is implicitly specified. We focus on minimizing
data-sharing overheads (for MPI it’s communication overheads).

4

21-03-2006 Alexandre David, MVP'06 4

Programming Models
Concurrency supported by:

Processes – private data unless otherwise
specified.
Threads – shared memory, lightweight.
Directive based programming – concurrency
specified as high level compiler directive,
OpenMP.

See OS course.

5

21-03-2006 Alexandre David, MVP'06 5

Threads Basics
All memory is globally accessible.
But the stack is considered local.

In practice both local (private) and global
(shared) memory.
Recall that memory is physically distributed
and local accesses are faster.

6

21-03-2006 Alexandre David, MVP'06 6

Why Threads?
Software portability – applications
developed and run without modification on
multi-processor machines.
Latency hiding – recall chapter 2.
Implicit scheduling and load balancing –
specify many tasks and let the system map
and schedule them.
Ease of programming, widespread.

7

21-03-2006 Alexandre David, MVP'06 7

The POSIX Thread API
It is a standard API (like MPI).

Supported by most vendors.

General concepts applicable to other
thread APIs (java threads, NT threads,
etc).
Low level functions, API is missing high
level constructs, e.g., no collective
communication like in MPI.

8

21-03-2006 Alexandre David, MVP'06 8

Thread Creation

#include <pthread.h>

int pthread_create(
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void* (*thread_function)(void *),
void *arg);

Header.

Identifier.

NULL for
default.

Function to call with its argument.

Invokes thread_function as a thread.
Notes:
•The identifier thread_handle is written before the function returns.
•The function returns in the main thread, the function thread_function runs in
parallel in another thread.
•On uni-processor machines the thread may preempt its creator thread.
•There is a returned result (success or not).
•Beware of race conditions: Make sure to initialize everything before creating
the thread (and not after).

9

21-03-2006 Alexandre David, MVP'06 9

Waiting for Termination

int pthread_join(
pthread_t thread,
void ** ptr);

Thread to wait for.

Threads call pthread_exit(value).
The caller can read a (void*) at address ptr.

The creator process/thread calls this function
to wait for its spawned threads.

And returns success (0) or an error code.

10

21-03-2006 Alexandre David, MVP'06 10

Example: Compute PI
#include <pthread.h>
...
main() {

…
pthread_t p_threads[MAX_THREADS];
pthread_attr_t attr;
pthread_attr_init (&attr);
for (i=0; i< num_threads; i++) {

hits[i] = i;
pthread_create(&p_threads[i], &attr, compute_pi,

(void *) &hits[i]);
}
for (i=0; i< num_threads; i++) {

pthread_join(p_threads[i], NULL);
total_hits += hits[i];

}

This is a lousy computation of pi. Based on area ratios. Take a square 1x1 and
put a circle inside. Square area = 1, circle area = πr2 = π/4 (r = ½). Choose
many points randomly and the ratio hits/total will converge towards π/4.

11

21-03-2006 Alexandre David, MVP'06 11

Example: Compute PI
void *compute_pi (void *s) {

int seed, i;
double rand_no_x, rand_no_y;
int *hit_pointer = (int *) s;
seed = *hit_pointer;
int local_hits = 0;
for (i = 0; i < sample_points_per_thread; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
local_hits ++;

seed *= i;
}
*hit_pointer = local_hits;
pthread_exit(0);

}

To return the result.
Used to pass seed.

Count hits
in the circle.

Return result.

Call to rand_r, worse than drand48 or rand, because we need a reentrant
function.

12

21-03-2006 Alexandre David, MVP'06 12

Performance if
• change to global count,
• execute on 4 processor machine.

This shows false sharing (chapter 2).

Speedup of 3.91, efficiency = 0.98. Note: The threads do not synchronize with
each other.

13

21-03-2006 Alexandre David, MVP'06 13

Race Condition
Need to synchronize if a shared variable is
updated concurrently.

if (my_cost < best_cost) best_cost = my_cost;
Race condition.
Can give wrong (inconsistent) result.
We want this to be atomic – but we can’t so
this is a critical segment: Must be executed by
only one thread at a time.

Race condition: The result depends on the order of the different statements in
parallel, i.e., the interleaving. Inconsistent result: It does not correspond to any
serialization of the threads (considering the test-and-update atomic).

14

21-03-2006 Alexandre David, MVP'06 14

Mutex-Locks
Implement critical section.
Mutex-locks can be locked or unlocked.

Locking is atomic.
Threads must acquire a lock to enter a critical
section.
Threads must release their locks when leaving
a critical section.

Locks represent serialization points. Too
many locks will decrease performance.

In the book “critical segment” but usually called “critical section”. The call to
“lock-a-thread” is blocking and returns only when the lock is acquired. Of
course all locks must initialized to unlocked when starting programs.
Be also careful on the granularity of what you lock. Locking big portions of
code is bad since you are killing parallelism for the code you are locking.

15

21-03-2006 Alexandre David, MVP'06 15

Mutex-Lock

int pthread_mutex_init(
pthread_mutex_t *mutex_lock,
const pthread_mutextattr_t *lock_attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex_lock);

int pthread_mutex_unlock(
pthread_mutex_t *mutex_lock);

Return value, as usual.
Do not unlock an already unlocked mutex.
When unlocking a mutex, there may be another thread that will be unblocked.
The choice depends on the scheduler, i.e., you don’t know and you shouldn’t
assume anything.
NULL argument means default value – but no NULL for mutex_lock!

16

21-03-2006 Alexandre David, MVP'06 16

Example Revisited
pthread_mutex_t minimum_value_lock;
...
main() {

...
pthread_mutex_init(&minimum_value_lock, NULL);

....
}
void *find_min(void *list_ptr) {

...
pthread_mutex_lock(&minimum_value_lock);
if (my_min < minimum_value) minimum_value = my_min;
pthread_mutex_unlock(&minimum_value_lock);
…

}

Careful with the use of mutex locks. Don’t use one mutex lock for all your locks
if they are independent. Use one different lock for different kinds of code
segments that are not mutually exclusive – it may still be the case that you
have 2 portions of code accessing the same data, in which case you need to
use the same lock.

