Programming Using the
Message-Passing Paradigm

* (cont.)

Alexandre David
B2-206

21-03-2006 Alexandre David, MVP'06

Collective Operation — Recall

= One-to-all broadcast — MPI_Bcast.

= All-to-one reduction — MPI_Reduce.

= All-to-all broadcast — MPI1_Allgather.

= All-to-all reduction — MPI_Reduce_scatter.
= All-reduce and prefix sum — MPI_Allreduce.
= Scatter — MPI_Scatter.

= Gather — MPI_Gather.

= All-to-all personalized — MPI_Alltoall.

You should know what these operations do.

Collective Communication and
Computation Operations

= Common collective operations supported.

= Over a group or processes corresponding to a
communicator.

= All processes in the communicator must call
these functions.

= These operations act like a virtual
synchronization step.

Parallel programs should be written such that they behave correctly even if a
global synchronization is performed before and after the collective call.

Barrier

= Communicator: Group of processes that
are synchronized.

= The function returns after all processes in
the group have called the function.

int MPI_Barrier(MPI_Comm comm)

v v v v v

21-03-2006 Alexandre David, MVP'06

One-to-All Broadcast

= All the processes must call this function,
even the receivers.

int MPI_Bcast(void *buf,
int count, MPI_Datatype datatype,
int source, MPI_Comm comm)

Po I [[Po B [1]
PL 1] — 2roadeast o mpr]
P2 [TTT1] Reduce P2l 1L
P3 [[P3 @ [[]

A

All-to-One Reduction

= Combine elements in sendbuf (of each process
in the group) using the operation op and return
in recvbuf of targef.

= See table 6.3 for the list of predefined operations
that are supported.

int MPI_Reduce(void *sendbuf, void *recvbuf,
int count,MPI_Datatype datatype,
MPI_Op op, int target,
MPI_Comm comm)

Constraint on the count of items of type datatype. All the processes call this
function even those that are not the target and they all provide a recvbuf.
When count > 1, the operation is applied element-wise. Why do they all need
arecvbuf?

iSpecial Operations
= MPI_MAXLOC and MPI_MINLOC work on

pairs (v;(1)

Payload.
Value for comparison.

= Compare with v, use |, to break ties, and
return (I,v).

= Additional MPI data-pair types defined.

See table 6.4 for the different pair data types.

iExample

17

11

12

17

11

Value 15
Process |0
MinLoc?

MaxLoc?

All-Reduce

= No target argument since all processes
receive the result.

int MPI_Allreduce(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

PO] [1] Po L[]
P I LT] All-reduce Pt [T T[]
P2) P2 [[1]
P3 [T [1] P3 Il [[]

10

10

Prefix-Operations

= Not only sums.
= Process j has prefix s;as expected.

int MPI_Scan(void *sendbuf, void *recvbuf,

int count, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

PO [a] Po [a]
PL [] Prefix-Scan P1
P2 c © P2 abc

P3 [d | P3

11

11

iScatter and Gather

PO .:- Scatter . PO .:]:D

PL [T 1] > p1 [T []
P2 [T 1] Gather P2 Il []
P3 [T [1] N EEE
21-03-2006 Alexandre David, MVP'06

12

12

All-Gather

= Variant of gather.

All-Gather

A

21-03-2006

Alexandre David, MVP'06

PO [[]
PL T [1]
P2 Il [[]
Ps M []

13

13

iAII-to—AII Personalized

21-03-2006

Po TN
P1
P2 [I
Ps [T [

PO

AII—to—AII 1
Personalized

> P2

P3

Alexandre David, MVP'06

14

14

Example Matrix*Vector

Partition on rows.

21-03-2006

Alexandre David, MVP'06

b
B

X =

Allgather (All-to-all broadcast)

‘l (Program 6.4)

Multiply I

15

15

Groups and Communicators

= How to partition a group of processes into
sub-groups?

= Group by color (different communicators).

= Sort by key (new ranks in the sub-groups)

int MPI_Comm_split(MPI_Comm comm,
int color, int key,
MPI_Comm *newcomm)

16

Sometimes, parallel algorithms need a restricted communication to certain

subsets of processes.

16

iSplit Example

new groups

PO: MPI_Comm_split(oldc,
P1: MPI_Comm_split(oldc,
P2: MPI_Comm_split(oldc,
P3: MPI_Comm_split(oldc,
P4: MPI_Comm_split(oldc,
P5: MPI_Comm_split(oldc,
P6: MPI_Comm_split(oldc,

(

P7: MPI_Comm_split{oldc,

N - - - o o ofcolor

PP PP PP PP key

Splitting Cartesian Topologies

= Split Cartesian topology into lower
dimensional grids.

Original group.

int MPI_Cart_sub(MPI_Comm commicarf,
int *keep_dims, MPT_Comm *comm_subcart)

Tell which dimensions to keep, e.g, New group.
2x4x7 and {1,0,1} — 4* sub (2x7)

18

The keep_dims (boolean) array tells which dimensions to keep for the new
sub-group partitioning. The coordinate will match, e.g., (1,2,3) in the original
will give (1,3) and will be in the 2" sub-group.

(1,0,1) -> 4* (2x7)

W
(0,0,1) -> 2%4* (7)

i d

19

19

Example Matrix*Vector

i(Program 6.8)

Partition. Distribute vector.
Sum reduce on rows.
_ 4+ -
S SN -
_ 4 -
Row sub-topology. Local multiplication.

21-03-2006 Alexandre David, MVP'06 20

20

Performance Evaluation

= Elapsed time.

double t1, 12;
t1=MPI_Wtime():

+2=MPT_Wtime():

printf("Elapsed time is %f sec\n", 12-11);

21

21

