
1

21-03-2006 Alexandre David, MVP'06 1

Programming Using the 
Message-Passing Paradigm 
(cont.)

Alexandre David
B2-206



2

21-03-2006 Alexandre David, MVP'06 2

Collective Operation – Recall
One-to-all broadcast – MPI_Bcast.
All-to-one reduction – MPI_Reduce.
All-to-all broadcast – MPI_Allgather.
All-to-all reduction – MPI_Reduce_scatter.
All-reduce and prefix sum – MPI_Allreduce.
Scatter – MPI_Scatter.
Gather – MPI_Gather.
All-to-all personalized – MPI_Alltoall.

You should know what these operations do.



3

21-03-2006 Alexandre David, MVP'06 3

Collective Communication and 
Computation Operations
Common collective operations supported.

Over a group or processes corresponding to a 
communicator.
All processes in the communicator must call 
these functions.

These operations act like a virtual 
synchronization step.

Parallel programs should be written such that they behave correctly even if a 
global synchronization is performed before and after the collective call. 



4

21-03-2006 Alexandre David, MVP'06 4

Barrier
Communicator: Group of processes that 
are synchronized.
The function returns after all processes in 
the group have called the function.

int MPI_Barrier(MPI_Comm comm)



5

21-03-2006 Alexandre David, MVP'06 5

Barrier



6

21-03-2006 Alexandre David, MVP'06 6

One-to-All Broadcast
All the processes must call this function, 
even the receivers.

int MPI_Bcast(void *buf,
int count, MPI_Datatype datatype,
int source, MPI_Comm comm)

P0

P1

P2

P3

P1

P2

P3

P0
Broadcast

Reduce



7

21-03-2006 Alexandre David, MVP'06 7

All-to-One Reduction
Combine elements in sendbuf (of each process 
in the group) using the operation op and return 
in recvbuf of target.
See table 6.3 for the list of predefined operations 
that are supported.

int MPI_Reduce(void *sendbuf, void *recvbuf,
int count,MPI_Datatype datatype,
MPI_Op op, int target,
MPI_Comm comm)

Constraint on the count of items of type datatype. All the processes call this 
function even those that are not the target and they all provide a recvbuf. 
When count > 1, the operation is applied element-wise. Why do they all need 
a recvbuf?



8

21-03-2006 Alexandre David, MVP'06 8

Special Operations
MPI_MAXLOC and MPI_MINLOC work on 
pairs (vi, li).

Compare with vi, use li to break ties, and 
return (l,v).
Additional MPI data-pair types defined.

Value for comparison.

Payload.

See table 6.4 for the different pair data types.



9

21-03-2006 Alexandre David, MVP'06 9

Example

Value 15 17 11 12 17 11

Process 0 1 2 3 4 5

MinLoc?

MaxLoc?



10

21-03-2006 Alexandre David, MVP'06 10

All-Reduce
No target argument since all processes 
receive the result.

int MPI_Allreduce(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

P0

P1

P2

P3

P1

P2

P3

P0

All-reduce



11

21-03-2006 Alexandre David, MVP'06 11

Prefix-Operations
Not only sums.
Process j has prefix sj as expected.

int MPI_Scan(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

a

b

c

d

P0

P1

P2

P3

P1

P2

P3

P0

Prefix-Scan

a

ab

abc

abcd



12

21-03-2006 Alexandre David, MVP'06 12

Scatter and Gather

P0

P1

P2

P3

P1

P2

P3

P0Scatter

Gather



13

21-03-2006 Alexandre David, MVP'06 13

All-Gather
Variant of gather.

P0

P1

P2

P3

P1

P2

P3

P0

All-Gather



14

21-03-2006 Alexandre David, MVP'06 14

All-to-All Personalized

P0

P1

P2

P3

P1

P2

P3

P0
All-to-All

Personalized



15

21-03-2006 Alexandre David, MVP'06 15

Example Matrix*Vector 
(Program 6.4)

Partition on rows.

Allgather (All-to-all broadcast)

Multiply



16

21-03-2006 Alexandre David, MVP'06 16

Groups and Communicators
How to partition a group of processes into 
sub-groups?
Group by color (different communicators).
Sort by key (new ranks in the sub-groups).

int MPI_Comm_split(MPI_Comm comm,
int color, int key,
MPI_Comm *newcomm)

Sometimes, parallel algorithms need a restricted communication to certain 
subsets of processes. 



17

21-03-2006 Alexandre David, MVP'06 17

Split Example

P0: MPI_Comm_split(oldc, 0, 1, ...) P0
P1: MPI_Comm_split(oldc, 0, 1, ...) P1
P2: MPI_Comm_split(oldc, 0, 1, ...) P2
P3: MPI_Comm_split(oldc, 1, 1, ...) P0
P4: MPI_Comm_split(oldc, 1, 1, ...) P1
P5: MPI_Comm_split(oldc, 1, 1, ...) P2
P6: MPI_Comm_split(oldc, 1, 1, ...) P3
P7: MPI_Comm_split(oldc, 2, 1, ...) P0

co
lo

r
ke

y

ne
w 

 g
ro

up
s



18

21-03-2006 Alexandre David, MVP'06 18

Splitting Cartesian Topologies
Split Cartesian topology into lower 
dimensional grids.

int MPI_Cart_sub(MPI_Comm comm_cart,
int *keep_dims, MPI_Comm *comm_subcart)

Original group.

New group.Tell which dimensions to keep, e.g,
2x4x7 and {1,0,1} → 4* sub (2x7)

The keep_dims (boolean) array tells which dimensions to keep for the new 
sub-group partitioning. The coordinate will match, e.g., (1,2,3) in the original 
will give (1,3) and will be in the 2nd sub-group.



19

21-03-2006 Alexandre David, MVP'06 19

Example

4

2

7
original 2x4x7

(1,0,1) -> 4* (2x7)

2

7

(0,0,1) -> 2*4* (7)

7



20

21-03-2006 Alexandre David, MVP'06 20

Example Matrix*Vector 
(Program 6.8)

Partition.

Row sub-topology.
Colum sub-topology.

Distribute vector.

Local multiplication.

Sum reduce on rows.



21

21-03-2006 Alexandre David, MVP'06 21

Performance Evaluation
Elapsed time.

double t1, t2;
t1=MPI_Wtime();
…
t2=MPI_Wtime();
printf(“Elapsed time is %f sec\n”, t2-t1);


