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Exercise 5.1 - Amdahl’s law
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Exercise 5.2

On a single processor, 11 arcs are traversed by FDS before the solution is found. On two processors
fours arcs are traversed by P1 before it finds the solution. In Figure 5.3 (page 201), the cost was on
counting the states explored, here we count the arcs. The speedup is 11/4 = 2.75. The anomaly is
due to the fact that in Figure 5.10(b) (page 228), the algorithm being executed is not the same as
in Figure 5.10(a). The parallel algorithm performs less overall work than the serial algorithm. The
algorithm in Figure 5.10(b) is not a true DFS. If a single processor alternates between the nodes
of the left and right sub-trees (which emulates the parallel algorithm), then the serial algorithm
traverses only 8 arcs and the speedup becomes 2.

Exercise 5.3

As a reminder the degree of concurrency here corresponds the the maximal degree of concurrency
in chapter 3. Table gives the answers. The overhead function is computed by using E = W
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Table 1: Characteristics of graphs of Figure 5.11 (page 229).

pTP = W
E

in T0 = pTp − W = W ( 1
E
− 1).

Exercise 5.9

We use the expression TP = n/p − 1 + 11log(p). We have the constraint

512 ≥
n

p
− 1 + 11log(p) =⇒ (512 − 11log(p))p ≥ n

that gives us the largest n corresponding to a p in Table . In general it is not possible to solve an
arbitrarily large problem with a fixed amount of time provided an unlimited number of processors.
For any parallel system with an isoefficiency function greater than Θ(p), a plot between p and
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p 1 4 16 64 256 1024 4096
log(p) 0 2 4 6 8 10 12
n 513 1964 7504 28608 108800 412672 1560576

Table 2: Largest n for varying p.

the size of the largest problem that can be solved in a given time using p processors will reach a
maximum. It can be shown that for cost-optimal algorithms, the problem size can be increased
linearly with the number of processors while maintaining a fixed execution time iff the isoefficiency
fjnction is Θ(p).
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