Suggested Solutions - Exercises of Lecture 8 - MVP'06

Alexandre David

Exercise 5.1-Amdahl's law

$$
S=\frac{W}{T_{P}}=\frac{W}{W_{S}+\frac{W-W_{S}}{p}} \leq \frac{W}{W_{S}} \forall p>0
$$

Exercise 5.2

On a single processor, 11 arcs are traversed by FDS before the solution is found. On two processors fours arcs are traversed by P_{1} before it finds the solution. In Figure 5.3 (page 201), the cost was on counting the states explored, here we count the arcs. The speedup is $11 / 4=2.75$. The anomaly is due to the fact that in Figure 5.10 (b) (page 228), the algorithm being executed is not the same as in Figure $5.10(\mathrm{a})$. The parallel algorithm performs less overall work than the serial algorithm. The algorithm in Figure $5.10(\mathrm{~b})$ is not a true DFS. If a single processor alternates between the nodes of the left and right sub-trees (which emulates the parallel algorithm), then the serial algorithm traverses only 8 arcs and the speedup becomes 2 .

Exercise 5.3

As a reminder the degree of concurrency here corresponds the the maximal degree of concurrency in chapter 3 . Table gives the answers. The overhead function is computed by using $E=\frac{W}{p T_{P}} \Longrightarrow$

Graph	(a)	(b)	(c)	(d)
Degree of concurrency (DC)	2^{n-1}	2^{n-1}	n	n
Longest path	$\log (n)$	$\log (n)$	$2 n-1$	n
Number of processors	$2^{n}-1$	$2^{n}-1$	n^{2}	$\frac{n(n+1)}{2}$
Maximum possible speedup	$\frac{2^{n}-1}{\log (n)}$	$\frac{2^{n}-1}{\log (n)}$	$\frac{n^{2}}{2 n-1}$	$\frac{n+1}{2}$
Longest path if $p=\mathrm{DC} / 2$	$\log (n)+1$	$\log (n)+1$	$\frac{n}{2}+\frac{n}{2}+n+n-2$	$\frac{n}{2}+\frac{n}{2}+\frac{n}{2}$
Speedup for $p=\mathrm{DC} / 2$	$\frac{2^{n}-1}{\log (n)+1}$	$\frac{2^{n}-1}{\log (n)+1}$	$\frac{n^{2}}{3 n-2}$	$\frac{n+1}{3}$
Efficiency for $p=\mathrm{DC} / 2$	$\frac{\log (n)+1}{\log (n)+1}$	$\frac{1}{3 n-2}$	$\frac{2}{3 n}$	
Overhead $\left(T_{0}\right)$ for $p=\mathrm{DC} / 2$	$\left(2^{n}-1\right) \log (n)$	$\left(2^{n}-1\right) \log (n)$	$3 n^{2}(n-1)$	$\frac{n(n+1)(3 n-2)}{4}$

Table 1: Characteristics of graphs of Figure 5.11 (page 229).
$p T_{P}=\frac{W}{E}$ in $T_{0}=p T_{p}-W=W\left(\frac{1}{E}-1\right)$.

Exercise 5.9

We use the expression $T_{P}=n / p-1+11 \log (p)$. We have the constraint

$$
512 \geq \frac{n}{p}-1+11 \log (p) \Longrightarrow(512-11 \log (p)) p \geq n
$$

that gives us the largest n corresponding to a p in Table. In general it is not possible to solve an arbitrarily large problem with a fixed amount of time provided an unlimited number of processors. For any parallel system with an isoefficiency function greater than $\Theta(p)$, a plot between p and

p	1	4	16	64	256	1024	4096
$\log (p)$	0	2	4	6	8	10	12
n	513	1964	7504	28608	108800	412672	1560576

Table 2: Largest n for varying p.
the size of the largest problem that can be solved in a given time using p processors will reach a maximum. It can be shown that for cost-optimal algorithms, the problem size can be increased linearly with the number of processors while maintaining a fixed execution time iff the isoefficiency fjnction is $\Theta(p)$.

