Analytical Modeling of Parallel Programs (Chapter 5)

> Alexandre David B2-206

Topic Overview

- Sources of overhead in parallel programs.
- Performance metrics for parallel systems.
- Effect of granularity on performance.
- Scalability of parallel systems.
- Minimum execution time and minimum cost-optimal execution time.
- Asymptotic analysis of parallel programs.
- Other scalability metrics.

Analytical Modeling – Basics

A sequential algorithm is evaluated by its runtime in function of its input size.

O(f(n)), Ω(f(n)), Θ(f(n)).

- The asymptotic runtime is independent of the platform. Analysis "at a constant factor".
- A parallel algorithm has more parameters.
 Which ones?

Analytical Modeling – Basics

- A parallel algorithm is evaluated by its runtime in function of
 - the input size,
 - the number of processors,
 - the communication parameters.
- Which performance measures?
- Compare to which (serial version) baseline?

Sources of Overhead in Parallel Programs

- Overheads: wasted computation, communication, idling, contention.
 - Inter-process interaction.
 - Load imbalance.
 - Dependencies.

Performance Metrics for Parallel Systems

- Execution time = time elapsed between
 - beginning and end of execution on a sequential computer.
 - beginning of first processor and end of the last processor on a parallel computer.

Performance Metrics for Parallel Systems

- Total parallel overhead.
 - Total time collectively spent by all processing elements = pT_{P} .
 - Time spent doing useful work (serial time) = T_s.
 - Overhead function: $T_O = pT_P T_{S^*}$

Performance Metrics for Parallel Systems

- What is the benefit of parallelism?
 Speedup of course... let's define it.
- Speedup $S = T_S / T_P$.
- Example: Compute the sum of n elements.
 - Serial algorithm Θ(*n*).
 - Parallel algorithm Θ(log n).
 - Speedup = $\Theta(n/\log n)$.
- Baseline (T_S) is for the best sequential algorithm available.
 Alexandre David, MVP'06

Speedup

- Theoretically, speedup can never exceed p. If > p, then you found a better sequential algorithm... Best: T_P=T_S/p.
- In practice, super-linear speedup is observed. How?
 - Serial algorithm does more work?
 - Effects from caches.
 - Exploratory decompositions.

Performance Metrics

- Efficiency *E=S/p*.
 - Measure time spent in doing useful work.
 - Previous sum example: $E = \Theta(1/\log n)$.
- Cost $C = pT_{P}$.
 - A.k.a. work or processor-time product.
 - Note: $E=T_S/C$.
 - Cost optimal if E is a constant.

Effect of Granularity on Performance

- Scaling down: To use fewer processing elements than the maximum possible.
- Naïve way to scale down:
 - Assign the work of n/p processing element to every processing element.
 - Computation increases by n/p.

Adding n Numbers – Bad Way

Adding n Numbers – Bad Way

Adding n Numbers – Good Way

Adding n Numbers – Good Way

Scalability of Parallel Systems

- In practice: Develop and test on small systems with small problems.
- Problem: What happens for the real large problems on large systems?

Difficult to extrapolate results.

Problem with Extrapolation

Scaling Characteristics of Parallel Programs

Rewrite efficiency (E):

$$\begin{cases} E = \frac{S}{p} = \frac{T_S}{pT_p} \Longrightarrow E = \frac{1}{1 + \frac{T_0}{T_S}} \\ pT_p = T_0 + T_S \end{cases}$$

What does it tell us?

Example: Adding Numbers

Table 5.1 Efficiency as a function of *n* and *p* for adding *n* numbers on *p* processing elements.

п	p = 1	p = 4	<i>p</i> = 8	<i>p</i> = 16	<i>p</i> = 32
64	1.0	0.80	0.57	0.33	0.17
192	1.0	0.92	0.80	0.60	0.38
320	1.0	0.95	0.87	0.71	0.50
512	1.0	0.97	0.91	0.80	0.62

$$\Rightarrow E = \frac{S}{p} = \frac{1}{1 + \frac{2p\log p}{n}}$$

Scalable Parallel System

- Can maintain its efficiency constant when increasing the number of processors and the size of the problem.
- In many cases $T_0 = f(T_{S'}p)$ and grows sublinearly with T_S . It can be possible to increase p and T_S and keep E constant.
- Scalability measures the ability to increase speedup in function of *p*.

Cost-Optimality

- Cost optimal parallel systems have efficiency Θ(1).
- So scalability and cost-optimality are linked.
- Adding number example: becomes costoptimal when n=Ω(p logp).

Scalable System

- Efficiency can be kept constant when
 - the number of processors increases and
 - the problem size increases.
- At which rate the problem size should increase with the number of processors?

The rate determines the degree of scalability.

In complexity problem size = size of the input. Here = number of basic operations to solve the problem. Noted W.

Parallel execution time $W + T_o(W, p)$ T_P pEfficiency SE \mathcal{D} W Speedup $\overline{W + T_o(W, p)}$ $\overline{T_{\mathcal{P}}}$ $\frac{Wp}{W+T_o(W,p)}.$ $1+T_o(W,p)/W$

Isoefficiency Function

For scalable systems efficiency can be kept constant if T₀/W is kept constant.

Example

- Adding number: We saw that $T_0 = 2p \log p$.
- We get $W = K 2p \log p$.
- If we increate p to p', the problem size must be increased by (p'logp')/(p logp) to keep the same efficiency.
 - Increase *p* by *p'/p*.
 - Increase n by (p'logp')/(p logp).

Isoefficiency = $\Theta(p^3)$.

Why?

 After isoefficiency analysis, we can test our parallel program with few processors and then predict what will happen for larger systems.

Link to Cost-Optimality

A parallel system is cost-optimal iff $pT_{P}=\Theta(W)$.

$$W + T_o(W, p) = \Theta(W)$$
$$T_o(W, p) = O(W)$$
$$W = \Omega(T_o(W, p))$$

A parallel system is cost-optimal iff its overhead (T_0) does not exceed (asymptotically) the problem size.

Lower Bounds

- For a problem consisting of W units of work, p ≤ W processors can be used optimally.
- $W=\Omega(p)$ is the lower bound.
- For a degree of concurrency C(W), $p \leq C(W)$.
 - C(W)=Θ(W) for optimality (necessary condition).

Example

- Gaussian elimination: $W = \Theta(n^3)$.
 - But eliminate *n* variables consecutively with $\Theta(n^2)$ operations $\rightarrow C(W) = O(n^2) = O(W^{2/3})$.
 - Use all the processors: $C(W)=\Theta(p) \rightarrow W=\Omega(p^{3/2})$.

Minimum Execution Time

- If T_P // in function of p, we want its minimum. Find p_0 s.t. $dT_P/dp=0$.
- Adding *n* numbers: $T_p = n/p + 2 \log p$.

$$\rightarrow p_0 = n/2. \\ \rightarrow T_P^{min} = 2 \log n.$$

Fastest but not necessary cost-optimal.

Cost-Optimal Minimum Execution Time

- If we solve cost-optimally, what is the minimum execution time?
- We saw that if isoefficiency function = Θ(f(p)) then a problem of size W can be solved optimally iff p=Ω(f⁻¹(W)).
- Cost-optimal system: $T_P = \Theta(W/p)$ $\rightarrow T_P^{\text{cost_opt}} = \Omega(W/f^{-1}(W)).$

Example: Adding Numbers

- Isoefficiency function f(p)=Θ(p logp).
 W=n=f(p)=p logp → logn=logp loglogp.
 We have approximately p=n/logn=f⁻¹(n).
- $T_P^{\text{cost_opt}} = \Omega(W/f^{-1}(W))$ = $\Omega(n/\log n * \log(n/\log n) / (n/\log n))$ = $\Omega(\log(n/\log n)) = \Omega(\log n - \log\log n) = \Omega(\log n).$
- $T_P = \Theta(n/p + \log p) = \Theta(\log n + \log(n/\log n))$ = $\Theta(2\log n - \log\log n) = \Theta(\log n).$
- For this example $T_P^{\text{cost}_opt} = \Theta(T_P^{\min})$.

Remark

• If $p_0 > C(W)$ then its value is meaningless. T_P^{min} is obtained for p=C(W).

Asymptotic Analysis of Parallel Programs

Table 5.2 Comparison of four different algorithms for sorting a given list of numbers. The table shows number of processing elements, parallel runtime, speedup, efficiency and the pT_P product.

Algorithm	A1	A2	A3	A4
р	n^2	log n	п	\sqrt{n}
T_P	1	п	\sqrt{n}	$\sqrt{n}\log n$
S	$n\log n$	$\log n$	$\sqrt{n}\log n$	\sqrt{n}
E	$\frac{\log n}{n}$	1	$\frac{\log n}{\sqrt{n}}$	1
pT_P	n^2	$n\log n$	<i>n</i> ^{1.5}	n log n

Other Scalability Metrics

- Scaled speedup: speedup when problem size increases linearly in function of p.
 - Motivation: constraints such as memory linear in function of p.
 - Time and memory constrained.