
Analytical Modeling of Parallel 
Programs (Chapter 5)

Alexandre David
B2-206



10-03-2006 Alexandre David, MVP'06 2

Topic Overview
Sources of overhead in parallel programs.
Performance metrics for parallel systems.
Effect of granularity on performance.
Scalability of parallel systems.
Minimum execution time and minimum 
cost-optimal execution time.
Asymptotic analysis of parallel programs.
Other scalability metrics.



10-03-2006 Alexandre David, MVP'06 3

Analytical Modeling – Basics
A sequential algorithm is evaluated by its 
runtime in function of its input size.

O(f(n)), Ω(f(n)), Θ(f(n)).

The asymptotic runtime is independent of 
the platform. Analysis “at a constant 
factor”.
A parallel algorithm has more parameters.

Which ones?



10-03-2006 Alexandre David, MVP'06 4

Analytical Modeling – Basics
A parallel algorithm is evaluated by its 
runtime in function of

the input size,
the number of processors,
the communication parameters.

Which performance measures?
Compare to which (serial version) 
baseline?



10-03-2006 Alexandre David, MVP'06 5

Sources of Overhead in Parallel 
Programs
Overheads: wasted computation, 
communication, idling, contention.

Inter-process interaction.
Load imbalance.
Dependencies.



10-03-2006 Alexandre David, MVP'06 6

Performance Metrics for Parallel 
Systems
Execution time = time elapsed between

beginning and end of execution on a 
sequential computer.
beginning of first processor and end of the last
processor on a parallel computer.



10-03-2006 Alexandre David, MVP'06 7

Performance Metrics for Parallel 
Systems
Total parallel overhead.

Total time collectively spent by all processing 
elements = pTP.
Time spent doing useful work (serial time) = 
TS.
Overhead function: TO = pTP-TS.



10-03-2006 Alexandre David, MVP'06 8

Performance Metrics for Parallel 
Systems
What is the benefit of parallelism?

Speedup of course… let’s define it.

Speedup S = TS/TP.
Example: Compute the sum of n elements.

Serial algorithm Θ(n).
Parallel algorithm Θ(logn).
Speedup = Θ(n/logn).

Baseline (TS) is for the best sequential 
algorithm available.



10-03-2006 Alexandre David, MVP'06 9

Speedup
Theoretically, speedup can never exceed 
p. If > p, then you found a better 
sequential algorithm… Best: TP=TS/p.
In practice, super-linear speedup is 
observed. How?

Serial algorithm does more work?
Effects from caches.
Exploratory decompositions.



10-03-2006 Alexandre David, MVP'06 10

Speedup – Example

1 processing element:
14tc.
2 processing elements:
5tc.
Speedup: 2.8.

Depth-first Search



10-03-2006 Alexandre David, MVP'06 11

Performance Metrics
Efficiency E=S/p.

Measure time spent in doing useful work.
Previous sum example: E = Θ(1/logn).

Cost C=pTP.
A.k.a. work or processor-time product.
Note: E=TS/C.
Cost optimal if E is a constant.



10-03-2006 Alexandre David, MVP'06 12

Effect of Granularity on 
Performance
Scaling down: To use fewer processing 
elements than the maximum possible.
Naïve way to scale down:

Assign the work of n/p processing element to 
every processing element.

Computation increases by n/p.
Communication growth ≤ n/p.

If a parallel system with n processing elements 
is cost optimal, then it is still cost optimal with 
p.

If it is not cost optimal, it may
still not be cost optimal after the
granularity increase.



10-03-2006 Alexandre David, MVP'06 13

Adding n Numbers – Bad Way

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

0 1 2 3



10-03-2006 Alexandre David, MVP'06 14

Adding n Numbers – Bad Way

12+13

8+9

4+5

0+1

14+15

10+11

6+7

2+3

0 1 2 3



10-03-2006 Alexandre David, MVP'06 15

Adding n Numbers – Bad Way

12+13+14+15

8+9+10+11

4+5+6+7

0+1+2+3

0 1 2 3

+

+

+

Bad way: T=Θ((n/p)logp)



10-03-2006 Alexandre David, MVP'06 16

Adding n Numbers – Good Way

3

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

0 1 2 3

+

+

+

+

+

+

+

+

+

+

+

+



10-03-2006 Alexandre David, MVP'06 17

Adding n Numbers – Good Way

0+1+2+3 4+5+6+7 8+9+10+11 12+13+14+15

0 1 2 3

Much less communication. T=Θ(n/p +logp).



10-03-2006 Alexandre David, MVP'06 18

Scalability of Parallel Systems
In practice: Develop and test on small 
systems with small problems.
Problem: What happens for the real large 
problems on large systems?

Difficult to extrapolate results.



10-03-2006 Alexandre David, MVP'06 19

Problem with Extrapolation



10-03-2006 Alexandre David, MVP'06 20

Scaling Characteristics of 
Parallel Programs
Rewrite efficiency (E):

What does it tell us?

S
Sp

p

S

T
TE

TTpT

pT
T

p
SE

0
0

1

1

+
=⇒

⎪
⎩

⎪
⎨

⎧

+=

==



10-03-2006 Alexandre David, MVP'06 21

Example: Adding Numbers

n
ppp

SE

p
p
n

nS

p
p
nTP

log21

1

log2

log2

+
==⇒

+
=⇒

+=



10-03-2006 Alexandre David, MVP'06 22

Speedup



10-03-2006 Alexandre David, MVP'06 23

Scalable Parallel System
Can maintain its efficiency constant when 
increasing the number of processors and 
the size of the problem.
In many cases T0=f(TS,p) and grows sub-
linearly with TS. It can be possible to 
increase p and TS and keep E constant.
Scalability measures the ability to increase 
speedup in function of p.



10-03-2006 Alexandre David, MVP'06 24

Cost-Optimality
Cost optimal parallel systems have 
efficiency Θ(1).
So scalability and cost-optimality are 
linked.
Adding number example: becomes cost-
optimal when n=Ω(p logp).



10-03-2006 Alexandre David, MVP'06 25

Scalable System
Efficiency can be kept constant when

the number of processors increases and
the problem size increases.

At which rate the problem size should 
increase with the number of processors?

The rate determines the degree of scalability.

In complexity problem size = size of the 
input. Here = number of basic operations 
to solve the problem. Noted W.



10-03-2006 Alexandre David, MVP'06 26

Rewrite Formulas

Parallel execution time

Speedup

Efficiency



10-03-2006 Alexandre David, MVP'06 27

Isoefficiency Function
For scalable systems efficiency can be kept 
constant if T0/W is kept constant.

For a target E

Keep this constant

Isoefficiency function

W=KT0(W,p)



10-03-2006 Alexandre David, MVP'06 28

Example
Adding number: We saw that T0=2p logp.
We get W=K 2p logp.
If we increate p to p’, the problem size 
must be increased by (p’ logp’ )/(p logp) to 
keep the same efficiency.

Increase p by p’/p.
Increase n by (p’ logp’ )/(p logp).



10-03-2006 Alexandre David, MVP'06 29

Example

Isoefficiency = Θ(p3).



10-03-2006 Alexandre David, MVP'06 30

Why?
After isoefficiency analysis, we can test our 
parallel program with few processors and 
then predict what will happen for larger 
systems.



10-03-2006 Alexandre David, MVP'06 31

Link to Cost-Optimality
A parallel system is cost-optimal iff

pTP=Θ(W).

A parallel system is cost-optimal iff
its overhead (T0) does not exceed
(asymptotically) the problem size.



10-03-2006 Alexandre David, MVP'06 32

Lower Bounds
For a problem consisting of W units of 
work, p ≤ W processors can be used 
optimally.
W=Ω(p) is the lower bound.
For a degree of concurrency C(W),
p ≤ C(W).

C(W)=Θ(W) for optimality (necessary 
condition).



10-03-2006 Alexandre David, MVP'06 33

Example
Gaussian elimination: W=Θ(n3).

But eliminate n variables consecutively with 
Θ(n2) operations → C(W) = O(n2) = O(W2/3).
Use all the processors: C(W)=Θ(p) →
W=Ω(p3/2).



10-03-2006 Alexandre David, MVP'06 34

Minimum Execution Time
If TP in function of p, we want its 
minimum. Find p0 s.t. dTP/dp=0.
Adding n numbers: TP=n/p+2 logp.
→ p0=n/2.
→ TP

min=2 logn.
Fastest but not necessary cost-optimal.



10-03-2006 Alexandre David, MVP'06 35

Cost-Optimal Minimum 
Execution Time
If we solve cost-optimally, what is the 
minimum execution time?
We saw that if isoefficiency function = 
Θ(f(p)) then a problem of size W can be 
solved optimally iff p=Ω(f-1(W)).
Cost-optimal system: TP=Θ(W/p)
→ TP

cost_opt=Ω(W/f-1(W)).



10-03-2006 Alexandre David, MVP'06 36

Example: Adding Numbers
Isoefficiency function f(p)=Θ(p logp).
W=n=f(p)=p logp → logn=logp loglogp.
We have approximately p=n/logn=f-1(n).
TP

cost_opt=Ω(W/f-1(W))
=Ω(n/logn * log(n/logn) / (n/logn))
= Ω(log(n/logn))= Ω(logn -loglogn)= Ω(logn).
TP=Θ(n/p+logp)=Θ(logn+log(n/logn))
=Θ(2logn-loglogn)= Θ(logn).

For this example TP
cost_opt= Θ(TP

min).



10-03-2006 Alexandre David, MVP'06 37

Remark
If p0 > C(W) then its value is meaningless. 
TP

min is obtained for p=C(W).



10-03-2006 Alexandre David, MVP'06 38

Asymptotic Analysis of Parallel 
Programs



10-03-2006 Alexandre David, MVP'06 39

Other Scalability Metrics
Scaled speedup: speedup when problem 
size increases linearly in function of p.

Motivation: constraints such as memory linear 
in function of p.
Time and memory constrained.


