4.1

4.1) Add an extra iteration to the loop, i.e., from d instead of $d-1$. Add extra tests to check if the nodes you communicate to and from are < N , where N is your number of processes. What we do here is to consider the smallest hypercube to contain all N processes, although some nodes will be missing. In the algorithm, reverse the loop from 0 to d and see that we will follow the natural construction of a hypercube, which gives a natural proof of why the modification is correct

4.3

Recall: Standard algorithms for ail-to-all broadcast on a ring and a hypercube give the following times:

- with the assumption that there is no congestion. If ts=100tw we have $T_{\text {ring }}=(100+m)(p-1) t_{w}$ and $T_{\text {aso }}=(100$ log $p+m(p-1)) t$
- On a ring, the standard algorithm gives $T_{a}=T_{\text {ring }}$ and the hypercube algorithm suffers from congestion (ratio of bisection width $=\mathrm{p} / 4$, we take dimension ≥ 2) for all communications except the one that corresponds to the dimension of the ring. We have a correction factor $f=p(\log p-1) / 4 \log p$. For the hypercube we have $T_{b}=f T_{\text {hoube }}$
. If we look at the ratio T_{a} / T_{b} we see that for large messages the ring algorithm is better and for small messages, depending on p, the hypercube algorithm may be better.
$\underline{T_{a}}=100(p-1)+m(p-1) * 4$
$T_{b} \quad(100 \log p+m(p-1))^{*} p$

4.5

TI In the first iteration, the following pairs of processors exchange their data: $(0,4)$ $(1,5),(2,6)$, and $(3,7)$. This step takes time $t_{s}+4 t_{w} m$ because 4 messages of size m pass through the root of the tree. After this step each processor has data of size 2 m $(5,7)$. The size of each message is now 2 m and two messages traverse the channels in the same direction. This step takes also time $\mathrm{t}_{\mathrm{s}}+4 \mathrm{t}_{\mathrm{w}} \mathrm{m}$. There are 3 steps here (8 processors).
In general there are log p steps, each taking time $\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{w}} \mathrm{mp} / 2$. Note that we need this particular ordering of messages to limit congestion and keep the communication cos constant for every step.

