Basic Communication
* Operations

Alexandre David
B2-206

Today

= One-to-all broadcast & all-to-one reduction
(4.1).

= All-to-all broadcast and reduction (4.2).

= All-reduce and prefix-sum operations (4.3).

Collective Communication
Operations

= Represent regular communication patterns.

= Used extensively in most data-parallel
algorithms.

= Critical for efficiency.
= Available in most parallel libraries.

= Very useful to “get started” in parallel
processing.

Collective: involve group of processors.

The efficiency of data-parallel algorithms depends on the efficient
implementation of these operations.

Recall: t,+mt, time for exchanging a m-word message with cut-through
routing.

All processes participate in a single global interaction operation or subsets of
processes in local interactions.

Goal of this chapter: good algorithms to implement commonly used
communication patterns.

Reminder

= Result from previous analysis:

= Data transfer time is roughly the same
between all pairs of nodes.

= Homogeneity true on modern hardware
(randomized routing, cut-through routing...).
= L+,
» Adjust £, for congestion: effective £,

= Model: bidirectional links, single port.

= Communication with point-to-point
primitives.

Broadcast/Reduction

= One-to-all broadcast:

= Single process sends identical data to all (or
subset of) processes.

= All-to-one reduction:
= Dual operation.

= P processes have m words to send to one
destination.

= Parts of the message need to be combined.

Reduction can be used to find the sum, product, maximum, or minimum of sets
of nmbers.

&Broadcast/Reduction

pe

Broadcast Reduce

28-02-2006 Alexandre David, MVP'06 6

This is the logical view, what happens from the programmer’s perspective.

One-to-All Broadcast —
Ring/Linear Array

= Naive approach: send sequentially.
= Bottleneck.
= Poor utilization of the network.

= Recursive doubling:
= Broadcast in logp steps (instead of p).
= Divide-and-conquer type of algorithm.
= Reduction is similar.

Source process is the bottleneck. Poor utilization: Only connections between
single pairs of nodes are used at a time.

Recursive doubling: All processes that have the data can send it again.

Recursive Doubling
- o 23
&—6—
2 1
° .
3 B

Note:

*The nodes do not snoop the messages going “through” them. Messages are
forwarded but the processes are not notified of this because they are not

destined to them.
*Choose carefully destinations: furthest.
*Reduction symmetric: Accumulate results and send with the same pattern.

Example: Matrix*Vector
T;];lt:?:; [l]‘|pulI Vector . 1) 1-sall
PENFENTICEE
E : E E = One-to-all broadcast
d R iR iR R "
p A P P 2) Compute
p‘- ‘p ' p " P, P, | Matrix
P P, i .. Pis ! Py E Pis
Output E | |
R 3) All->1

Although we have a matrix & a vector the broadcast are done on arrays.

One-to-All Broadcast — Mesh

Extensions of the linear array algorithm.
= Rows & columns = arrays.
= Broadcast on a row, broadcast on columns.
= Similar for reductions.
= Generalize for higher dimensions (cubes...).

10

10

&Broadcast on a Mesh

K K

28-02-2006 Alexandre David, MVP'06 11

1. Broadcast like linear array.

2. Every node on the linear array has the data and broadcast on the columns
with the linear array algorithm, in parallel.

11

One-to-All Broadcast —
Hypercube

= Hypercube with 29 nodes = d-dimensional
mesh with 2 nodes in each direction.

= Similar algorithm in d steps.
= Also in logp steps.
= Reduction follows the same pattern.

12

12

!LBroadcast on a Hypercube

(110) 3

(010)

(000)

Better for congestion: Use different links every time. Forwarding in parallel

again.

13

All-to-One Broadcast — Balanced
Binary Tree

= Processing nodes = leaves.
= Hypercube algorithm maps well.
= Similarly good w.r.t. congestion.

14

14

Broadcast on a Balanced Binary

Figure 4.7 One-to-all broadcast on an eight-node tree.
28-02-2006 Alexandre David, MVP'06 15

Divide-and-conquer type of algorithm again.

15

Algorithms

= SO far we saw pictures.
= Not enough to implement.
= Precise description
= to implement.
= to analyze.
= Description for hypercube.

= Execute the following procedure on all the
nodes.

16

For sake of simplicity, the number of nodes is a power of 2.

16

iBroadcast Algorithm

procedure ONE_TO_ALL_BC(d, my_id, X)

1.

2 begi o ;

gurré%ﬁ;‘: ; Izmg‘n§lio.n 111 /= Setall o bits of mask to 1 */

4. fo! d — 1 downto 0 do /* Quter loop */

5 . 011 +QQ%i; G0Qsk 100 +

6. hen /* If lower i bits of my_id are 0 */
E

8

9.
10.
198

12.

13. endelse:;
14. endif

15. endfor:

16. end ONE_.TO_ALL_BC

my _id is the label of the node the procedure is executed on. The procedure
performs d communication steps, one along each dimension of the hypercube.

Nodes with zero in i least significant bits (of their labels) participate in the
communication.

17

!LBroadcast Algorithm

procedure ONE_TO_ALL_BC(d, my_id, X)

1.

2. begin

3. mask =27 — 1, /* Set all d bits of mask to 1 */
4. fori :=d — |1 downto 0 do /* Outer loop */

5. : =QQL i QPQQ;.».-;; 100 %

6. en /*If lower / bits of my_id are 0 */
7.

8.

9,

10. els

11.

12.

13. en

14. endif

15. endfor:

16. end ONE_.TO_ALL_BC

my _id is the label of the node the procedure is executed on. The procedure
performs d communication steps, one along each dimension of the hypercube.

Nodes with zero in i least significant bits (of their labels) participate in the
communication.

!LBroadcast Algorithm

procedure ONE_-TO_ALL_BC(d, my_id, X)

1.

2. begin

3. mask =27 — 1, /* Set all d bits of mask to 1 */
4. fori :=d — |1 downto 0 do /* Outer lopp */

s. / /* Set bit i QPQQ;Y»-A- 00 *

6. /# 1f lower i bits of my_id are 0 */
7.

8.

9,

10.

11.

12.

13. endelse:;

14. endif

15. endfor:

16. end ONE_TO_ALL_BC

my _id is the label of the node the procedure is executed on. The procedure

performs d communication steps, one along each dimension of the hypercube.

Nodes with zero in i least significant bits (of their labels) participate in the
communication.

Notes:

*Every node has to know when to communicate, i.e., call the procedure.

*The procedure is distributed and requires only point-to-point synchronization.
*Only from node 0.

19

oL Algorithm For Any Source
1. procedure GENERAL_ONE_TO_ALL_BC(d, my_id, source, X)
23 begin
3.
4. mask 29 —1;
5. fori :=d — 1 downto O do /* Outer loop */
6. mask 1= mask XOR 2'; /* Set bit i of mask to 0 #/
7. i ND masik) = 0 then
8. i '
9. virtual_dest XOR 2';
10. send X t
I# Convert virfual_dest to the label of the physical destination */
1. else
12. virtual _source _virtual _id XOR 2
13. receive X from
/* Convert virtual_source to the label of the physical source */
14, endelse:
15. endfor;
16. end GENERAL_ONE_TO_ALL_BC
20

XOR the source = renaming relative to the source. Still works because of the
sub-cube property: changing 1 bit = navigate on one dimension, keep a set of
equal bits = sub-cube.

Reduce Algorithm

| procedure ALL_TO_ONE_REDUCE(d, my_d, m, X, sum)
2 begin
3t for j :=0tom — | do sum|j] := X[j]:
4, mask = 0;
5 fori :=0tod — | do
/# Select nodes whose lower 7 bits are 0 */
6 if (my_id AND mask) = 0 then
72 if (my_id AND 2') £ 0 then
8. msg_destination := mv_id XOR 2':
" In a nutshell:
1. reverse the previous one.
12. TECEIVE A ITOM Mg SONTCe,
13. for j:=0tom — 1 do
14. sum(j] :=sum[j] + X[j]:
15. endelse:
16. mask := mask XOR 2'; /* Set bit i of mask to 1 */
17. endfor:

18. end ALL_.TO_.ONE_REDUCE

21

21

iCost Analysis

p processes — logp steps (point-to-point
transfers in parallel).

Each transfer has a time cost of

141, m.

Total time: T=(*.#t,m)logp.

22

22

All-to-All Broadcast and
Reduction

= Generalization of broadcast:
= Each processor is a source and destination.

= Several processes broadcast different
messages.

= Used in matrix multiplication (and matrix-
vector multiplication).

= Dual: all-to-all reduction.

23

How to do it?

If performed naively, it may take up to p times as long as a one-to-all
broadcast (for p processors).

Possible to concatenate all messages that are going through the same path
(reduce time because fewer).

23

All-to-All Broadcast and

iReduction

All-to-all broadcast

My M, My
All-to-all reduction (o) (1) «.. (p)
~ Ay ANy L

Figure 4.8 All-to-all broadcast and all-to-all reduction.

28-02-2006 Alexandre David, MVP'06 24

24

iAII—to—AII Broadcast — Rings

0[7 1jo

etc...

28-02-2006 Alexandre David, MVP'06

25

All communication links can be kept busy until the operation is complete
because each node has some information to pass. One-to-all in logp steps, all-
to-all in p-1 steps instead of p logp (naive).

How to do it for linear arrays? If we have bidirectional links (assumption from
the beginning), we can use the same procedure.

iAII—to—AII Broadcast Algorithm

1. procedure ALL_.TO_ALL_BC_RING(my_d, my_msg, p, result)
2. begi .
3. Ring: mod p.
4. .Receive & send - point-to-point.
5. result :=my_msg L.
6. msg := result; Initialize the |00p.
7. fori:=1top—1do
8. send myg to right; F d
9. receive msg from lefi. orward msg.
10. Accumulate result.
1. endfor:
12. end ALL_.TO_ALL_BC_RING
Algorithm 4.4 All-to-all broadcast on a p-node ring.
28-02-2006 Alexandre David, MVP'06 26

26

1LAn-to-Au Reduce Algorithm

1. procedure ALL_TO_ALL_RED_RING(my_id, my_msg, p, result)
2. begin

3. left := (my-id — 1) mod p:

4. right == (my_d + 1) mod p:

5. recy =0,

0. fori:=1top—1do

il | = (my.d + i) mod p;

5. b;‘e:‘a'np E: ;'n;\‘g[jl :;mr\‘: ! ACCU!’T\UIGTC C(nd for'WClr'd.
9. send remp to left,

10. receive recv from right;

11. endfor:

12.

Last message for my._id.
13. end ALL.TO_ALL_RED_RING

Algorithm 4.5 All-to-all reduction on a p-node ring.
28-02-2006 Alexandre David, MVP'06 27

27

2|3]4]5]6]7]

All-to-All Reduce — Rings

o

®m

28-02-2006

G—(——C
10[1]2] 3]4]l5|6| 7|
3//4]5|6| 7 l0[1] 2] 3] 4|56 7|

Alexandre David, MVP'06

28

28

10| 1]2]|3] 4| 5| 6] 7|

‘_-‘ All-to-All Reduce — Rings
[da[l3[4[5[6[7] 1] 2[3[4[5[6]7]

28-02-2006

Alexandre David, MVP'06

@
2 7H
5[5] | | Bl
G—(—C
OEEEMEEE (o[H45]
|0 1] 2] 3]|4]|5| 6| 7 |0[1]2]3]4]5]6]7]

29

p-1 steps.

29

All-to-All Broadcast — Meshes

= Two phases:
= All-to-all on rows — messages size m.
= Collect sqrt(p) messages.
= All-to-all on columns — messages size
sqrt(p)*m.

30

30

iAII—to—AII Broadcast — Meshes

™
A
~
Y,
)

() QI

34.5) g
AN
P
1
1 0

B
3

I
1 (
~

i \
1 ! =
|
% | = b o
i
i i
i 1
i 1
i i
i i
i |
i i
i '
i i
i i
’ i
i i
i 1
.
=\ =
Bl = =)
AN 1
N
i i
i 1
i i
i i
i i
: i
i i
i i
i i
i i
i i
i |
LI i
N =
€. e 2
L I
i i
! ;

31

28-02-2006

Algorithm

~

procedure ALL_.TO_ALL_.BC_MESH(my_id, my_nsg, p, resulr)
begin

£)
4,
5t
0.
i3
8.
9.
10.
1.

/* Communication along rows */

lefi :=my_id — (my_id mod /P) 4+ (my-id — l)mod /p:
right := my_id — (my_id mod /p) + (my_id + 1) mod ,/p:
result = my_msg:
msg = result;
fori:=1to /p—1do

send msg to right;

receive msg from left;

result == result U msg;
endfor:

12
13.
14.
15.
16.
17.
18.
19.
20.

/* Communication along columns */

up = (my_id — /p) mod p.
down = (my_id + /p) mod p:
msg = resulr,
fori:=1to /p— 1do

send msg to down;

receive msg from up;

result = result \J msg;
endfor:

end ALL_TO_ALL_BC_MESH

32

32

All-to-All Broadcast -
Hypercubes

= Generalization of the mesh algorithm to
logp dimensions.

= Message size doubles at every step.
= Number of steps: logp.

33

Remember the 2 extremes:
eLinear array: p nodes per (1) dimension — p*.
*Hypercubes: 2 nodes per logp dimensions — 2'°%,

And in between 2-D mesh sqrt(p) nodes per (2) dimensions — sqrt(p)?.

33

All-to-All Broadcast — Hypercubes

6.7} 6.7y

—_—17

f\.._:
yah
o 1 P

anl 2
b A\

< —— >

@) o]

(a) Initial distribution of messages

28-02-2006 (¢} Distribution before the third step (dy Final distribution of messages

34

34

iAIgorithm

1. procedure ALL_TO_ALL_BC_HCUBE(my_id. my_msg, d, result)

2. begin

3. result = my_msg:

4. fori :=0tod — 1 do Loop on the dimensions
5. partner = my_id XOR 2';

6. send resuli to partner, Exchange messages

7. receive msg from pariner,

8. result ;= result U msg; Forward (double size)
9 endfor:

10. end ALL_.TO_ALL_BC_HCUBE

Algorithm 4.7 All-to-all broadcast on a d-dimensional hypercube.

35

At every step we have a broadcast on sub-cubes. The size of the sub-cubes

doubles at every step and all the nodes exchange their messages.

35

All-to-All Reduction — Hypercubes

1
2
3
4
5.
6
7
8

9.

10.
I1.
12
13.
14.
15.
16.
17.

procedure ALL_TO_ALL_RED_HCUBE(my_id, msg, d. result)

begin
recloe =0
fori:=d—1to0do _ Similar pGTTel"n
partner = my_id XOR 2'; 9
j =my.id AND2; in reverse order.

k = (my_id XOR 2') AND 2';
senloc = recloe + k

recloc = recloc + j;

send msglsenloc .. senloc + 2" — 1] to partmer,
receive remp|0 .. 2" — 1] from partner;

for j:=0to2 — 1 do -
msglrecloc + j| = msglrecloc + j] +temp[j]: Combine results

endfor;
endfor:
result :=msg[my_id]:
end ALL_.TO_ALL_.RED_HCUBE

Algorithm 4.8 AII-lo—aIn a d-dimensional hypercube. AND and XOR are bitwise
logical-and and exclusive-or operations, respectively.

36

36

Cost Analysis (Time)

= Ring:
u T:(ts + fmm)m'-z)
= Mesh:

« T=(t, + t,m)(p-D+(t, + t,mp) (p-1)
)
= Hypercube:

logp

= T=3 (t+ 2 um) logp steps
i—1

message of size 2-/m.

= tslogp +Hitumlip — 1).

Lower bound for the communication time of all-to-all broadcast for parallel
computers on which a node can communicate on only one of its ports at a time
= t,m(p-1). Each node receives at least m(p-1) words of data. That's for any
architecture.

The straight-forward algorithm for the simple ring architecture is interesting: It
is a sequence of p one-to-all broadcasts with different sources every time. The
broadcasts are pipelined. That's common in parallel algorithms.

We cannot use the hypercube algorithm on smaller dimension topologies
because of congestion.

37

37

Contention for a single
channel by multiple
messages

Figure 4.12 Contention for a channel when the communication step of Figure 4.11(c) for the hy-
percube is mapped onto a ring.
28-02-2006 Alexandre David, MVP'06 38

Contention because communication is done on links with single ports.
Contention is in the sense of the access to the link. The result is congestion on
the traffic.

38

All-Reduce

all buffers on every node.

broadcast.

o O O O

= Different from all-to-all reduce.
o O O O

= Each node starts with a buffer of size m.
= The final result is the same combination of

= Same as all-to-one reduce + one-to-all

.—>1234

1234

1234

1234

39

All-to-all reduce combines p different messages on p different nodes. All-

reduce combines 1 message on p different nodes.

39

All-Reduce Algorithm

= Use all-to-all broadcast but

= Combine messages instead of concatenating
them.

= The size of the messages does not grow.
» Cost (in logp steps): T=(t.+t,m) logp.

40

40

Prefix-Sum

= Given p numbers 7,n;,,...,1, ; (0ne on each
node), the problem is to compute the
sums s, = 2 *_, n, for all kKbetween 0 and
p-1.

= Initially, 77, is on the node labeled 4; and at
the end, the same node holds S,.

41

This is a reminder.

41

iPrefix-Sum Algorithm

l. procedure PREFIX_SUMS_HCUBE(my_d, my_number, d. result)
2. begin

3. result :== my_number:

4, msg = resuli,

5. fori :=0tod — 1 do

6. partner = my_id XOR 2'; All-reduce
7. send msg 1o parter:

8. receive number from partner,

9. msg 1= msg + number,

10.

L1. endfor:

12. end PREFIX_SUMS_HCUBE

Algorithm 4.9 Prefix sums on a ¢-dimensional hypercube.

28-02-2006 Alexandre David, MVP'06

42

42

6|54

56|7

0[1]2|3]

28-02-2006 Alexandre David, MVP'06

65| 4
0
10|
y 4
4]7]6|
E
1/0|3]2|

43

Figure in the book is messed up.

43

