
1

Alexandre David, MVP'06 1

3.11
2 ways to see it:

Either count directly with the help of slide 24 lecture 5:
tasks for the first loop n(n-1)/2 to compute the L[j,k] but also U[k,j] + the 
“splitting” of the element of the diagonal (n) + the loop on the smaller square 
matrix (size k at every iteration).

Or recursively: at a given iteration every element of the sub-matrix of size k is 
touched, hence k2 tasks, and you add the count for the previous iteration, and 
you have t(m)=t(m-1)+m2, or the sum of squares directly.

∑∑
=

−

=

=++
− n

i

n

i
iinnn

1

2
1

1

2

2
)1(2

Alexandre David, MVP'06 2

3.12 & 3.13
3.12) Maximum degree of concurrency is given by

Either the first loop: 2(m-1) tasks in parallel (m-1 for L and U),
Or the second loop (m-1)2 tasks in parallel (sub-matrix).
There is a dependency between the first and the second loop so it is the 
max(2(m-1), (m-1)2).

3.13) Critical path length: Let’s check the dependencies. Every 
element in the diagonal (except the first) needs an update from the 
second loop of the algorithm (on the sub-matrix) but its coefficient 
are computed by the first loop. That gives us a sub-path of length 2 
between every “split” of the diagonal element to its L and U parts. 
The critical path length is then 2(m-1)+1 = 2m-1.

Alexandre David, MVP'06 3

3.15, 3.17 & 3.21
3.15 & 3.17) See chapter 13.
3.21) We have to find the most balanced and imbalanced 
combinations for keeping 2 processors busy. The best is perfect 
balanced where we have a speedup of 2. The worst tries to keep one 
processor idle for the longest possible time with no task available 
where we get a speedup of 1.5.

1 2 3 4

5

5

10
30/15=2

2

1

3

4

5

5

10

30/20=1.5


