3.11

2 ways to see it:

- Either count directly with the help of slide 24 lecture 5 tasks for the first loop $\mathrm{n}(\mathrm{n}-1) / 2$ to compute the $\mathrm{L}[j, \mathrm{k}]$ but also $\mathrm{U}[\mathrm{k}, \mathrm{j}]+$ the "splitting" of the element of the diagonal $(\mathrm{n})+$ the loop on the smaller square matrix (size k at every iteration)

$$
2 \frac{n(n-1)}{2}+n+\sum_{i=1}^{n-1} i^{2}=\sum_{i=1}^{n} i^{2}
$$

- Or recursively: at a given iteration every element of the sub-matrix of size k is touched, hence k^{2} tasks, and you add the count for the previous iteration, and you have $t(m)=t(m-1)+m^{2}$, or the sum of squares directly.

3.12 \& 3.13

- 3.12) Maximum degree of concurrency is given by - Either the first loop: $2(\mathrm{~m}-1$) tasks in parallel ($\mathrm{m}-1$ for L and U),
- Or the second loop (m-1) ${ }^{2}$ tasks in parallel (sub-matrix).
- There is a dependency between the first and the second loop so it is the $\max \left(2(m-1),(m-1)^{2}\right)$.
3.13) Critical path length: Let's check the dependencies. Every lement in the diagonal (except the first) needs an update from the second loop of the algorithm (on the sub-matrix) but its coefficient are computed by the first loop. That gives us a sub-path of length 2 between every "split" of the diagonal element to its L and U parts. The critical path length is then $2(m-1)+1=2 m-1$.
| 3.15, 3.17 \& 3.21
ㄷ. 3.15 \& 3.17) See chapter 13.
- 3.21) We have to find the most balanced and imbalanced combinations for keeping 2 processors busy. The best is perfect balanced where we have a speedup of 2 . The worst tries to keep one processor idle for the longest possible time with no task available where we get a speedup of 1.5 .

