Principle Of Parallel Algorithm Design (cont.)

Alexandre David B2-206

Today

- Characteristics of Tasks and Interactions (3.3).
- Mapping Techniques for Load Balancing (3.4).
- Methods for Containing Interaction Overhead (3.5).
- Parallel Algorithm Models (3.6).

So Far...

- Decomposition techniques.
 - Identify tasks.
 - Analyze with task dependency & interaction graphs.
 - Map tasks to processes.
- Now properties of tasks that affect a good mapping.
 - Task generation, size, and size of data.

Task Generation

- Static task generation.
 - Tasks are known beforehand.
 - Apply to well-structured problems.
- Dynamic task generation.
 - Tasks generated on-the-fly.
 - Tasks & task dependency graph not available beforehand.

Task Sizes

- Relative amount of time for completion.
 - Uniform same size for all tasks.
 - Matrix multiplication.
 - Non-uniform.
 - Optimization & search problems.

Size of Data Associated with Tasks

- Important because of locality reasons.
- Different types of data with different sizes
 Input/output/intermediate data.
- Size of context cheap or expensive communication with other tasks.

Characteristics of Task Interactions

- Static interactions.
 - Tasks and interactions known beforehand.
 - And interaction at pre-determined times.
- Dynamic interactions.
 - Timing of interaction unknown.
 - Or set of tasks not known in advance.

Characteristics of Task Interactions

- Regular interactions.
 - The interaction graph follows a pattern.
- Irregular interactions.
 - No pattern.

Example: Image Dithering

Figure 3.22 The regular two-dimensional task-interaction graph for image dithering. The pixels with dotted outline require color values from the boundary pixels of the neighboring tasks.

Example: Sparse Matrix*Vector

Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding taskinteraction graph. In the decomposition Task *i* computes $\sum_{0 \le j \le 11, A[i, j] \ne 0} A[i, j] . b[j]$. Characteristics of Task Interactions

- Data sharing interactions:
 - Read-only interactions.
 - Read only data associated with other tasks.
 - Read-write interactions.
 - Read & modify data of *other* tasks.

Characteristics of Task Interactions

- One-way interactions.
 - Only one task initiates and completes the communication *without* interrupting the other one.
- Two-way interactions.
 - Producer consumer model.

Mapping Techniques for Load Balancing

- Map tasks onto processes.
- Goal: minimize overheads.
 - Communication.
 - Idling.
- Uneven load distribution may cause idling.
 - Constraints from task dependency → wait for other tasks.

Figure 3.23 Two mappings of a hypothetical decomposition with a synchronization.

Mapping Techniques

- Static mapping.
 - NP-complete problem for non-uniform tasks.
 - Large data compared to computation.
- Dynamic mapping.
 - Dynamically generated tasks.
 - Task size unknown.

Schemes for Static Mapping

- Mappings based on data partitioning.
- Mappings based on task graph partitioning.
- Hybrid mappings.

Array Distribution Scheme

Combine with "owner computes" rule to partition into sub-tasks.

row-wise distribution

column-wise distribution

Block Distribution cont.

P_0	P_1	P_2	P_3			л	л	л	л	л	л	T
P_4	P_5	P_6	P_7		P_0	P_1	P_2	P_3	P_4	P_5	P_6	P
P_8	P_9	P_{10}	P_{11}	-	P_{s}	Po	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_1
P_{12}	P_{13}	P_{14}	P_{15}			- 9	- 10		_ 12	- 10	- 14	1- 1
(a)					(b)							

Generalize to higher dimensions: 4x4, 2x8.

Example: Matrix*Matrix

- Partition output of C=A*B.
- Each entry needs the same amount of computation.
- Blocks on 1 or 2 dimensions.
- Different data sharing patterns.
- Higher dimensional distributions
 - means we can use *more processes*.
 - sometimes *reduces* interaction.

Figure 3.26 Data sharing needed for matrix multiplication with (a) one-dimensional and (b) twodimensional partitioning of the output matrix. Shaded portions of the input matrices *A* and *B* are required by the process that computes the shaded portion of the output matrix *C*.

Imbalance Problem

- If the amount of *computation* associated with data *varies* a lot then *block decomposition* leads to *imbalances*.
- Example: LU factorization (or Gaussian elimination).

LU Factorization

- Non singular square matrix A (invertible).
- $A = L^*U$.
- Useful for solving linear equations.

LU Factorization

In practice we work on A.

Another Variant

Decomposition

$$\begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{pmatrix} \rightarrow \begin{pmatrix} L_{1,1} & 0 & 0 \\ L_{2,1} & L_{2,2} & 0 \\ L_{3,1} & L_{3,2} & L_{3,3} \end{pmatrix} \cdot \begin{pmatrix} U_{1,1} & U_{1,2} & U_{1,3} \\ 0 & U_{2,2} & U_{2,3} \\ 0 & 0 & U_{3,3} \end{pmatrix}$$

$$1: A_{1,1} \rightarrow L_{1,1}U_{1,1} \\ 2: L_{2,1} = A_{2,1}U_{1,1}^{-1} \\ 3: L_{3,1} = A_{3,1}U_{1,1}^{-1} \\ 4: U_{1,2} = L_{1,1}^{-1}A_{1,2} \\ 5: U_{1,3} = L_{1,1}^{-1}A_{1,3} \end{bmatrix} \stackrel{6: A_{2,2} = A_{2,2} - L_{2,1}U_{1,2} \\ 7: A_{3,2} = A_{3,2} - L_{3,1}U_{1,2} \\ 8: A_{2,3} = A_{2,3} - L_{2,1}U_{1,3} \\ 9: A_{3,3} = A_{3,3} - L_{3,1}U_{1,3} \\ 10: A_{2,2} \rightarrow L_{2,2}U_{2,2} \end{bmatrix} \stackrel{11: L_{3,2} = A_{3,2}U_{2,2}^{-1} \\ 11: L_{3,2} = A_{3,2}U_{2,2}^{-1} \\ 12: U_{2,3} = L_{2,2}^{-1}A_{2,3} \\ 13: A_{3,3} = A_{3,3} - L_{3,2}U_{2,3} \\ 14: A_{3,3} \rightarrow L_{3,3}U_{3,3} \end{bmatrix}$$

Figure 3.27 A decomposition of LU factorization into 14 tasks.

Cyclic and Block-Cyclic Distributions

- Idea:
 - Partition an array into many more blocks than available processes.
 - Assign partitions (tasks) to processes in a round-robin manner.
- → each process gets several non adjacent blocks.

Block-Cyclic Distributions

a) Partition 16x16 into 2*4 groups of 2 rows.
αp groups of n/αp rows.
b) Partition 16x16 into square blocks of size 4*4 distributed on 2*2 processes.
α²p groups of n/α²p squares.

Randomized Distributions

P_0	P_1	P_2	<i>P</i> ₃	P_0	P_1	P_2	P_3
P_4	P_5	P_6	P_7	P_4	P_5	P_6	P_7
P_8	<i>P</i> ₉	<i>P</i> ₁₀	<i>P</i> ₁₁	P_8	P_9	P_{10}	P_{11}
P_{12}	<i>P</i> ₁₃	<i>P</i> ₁₄	<i>P</i> ₁₅	P_{12}	<i>P</i> ₁₃	P_{14}	<i>P</i> ₁₅
P_0	P_1	P_2	P_3	P_0	P_1	P_2	P_3
P_4	P_5	P_6	P_7	P_4	P_5	P_6	P_7
P_8	<i>P</i> 9	P_{10}	P_{11}	P_8	P_9	P_{10}	P_{11}
P_{12}	<i>P</i> ₁₃	<i>P</i> ₁₄	P_{15}	P_{12}	<i>P</i> ₁₃	P_{14}	<i>P</i> ₁₅

(a)

(b)

Irregular distribution with regular mapping! Not good.

1-D Randomized Distribution

V = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] random(V) = [8, 2, 6, 0, 3, 7, 11, 1, 9, 5, 4, 10] $mapping = 8 \ 2 \ 6 \ 0 \ 3 \ 7 \ 111195410$ $P_0 \ P_1 \ P_2 \ P_3$

Figure 3.32 A one-dimensional randomized block mapping of 12 blocks onto four process (i.e., $\alpha = 3$).

2-D Randomized Distribution

2-D block random distribution.

Graph Partitioning

- For sparse data structures and data dependent interaction patterns.
 - Numerical simulations. Discretize the problem and represent it as a mesh.
- Sparse matrix: assign equal number of nodes to processes & minimize interaction.
- Example: simulation of dispersion of a water contaminant in Lake Superior.

Discretization

Figure 3.34 A mesh used to model Lake Superior.

Partitioning Lake Superior

Random partitioning. Partitioning with minimum edge cut.

Finding an exact optimal partitioning is an NP-complete problem.

Mappings Based on Task Partitioning

- Partition the task dependency graph.
 - Good when static task dependency graph with known task sizes.

Sparse Matrix*Vector

Figure 3.38 A mapping for sparse matrix-vector multiplication onto three processes. The list C*i* contains the indices of *b* that Process *i* needs to access from other processes.

Sparse Matrix*Vector

Figure 3.39 Reducing interaction overhead in sparse matrix-vector multiplication by partitioning the task-interaction graph.

24-02-2006

Alexandre David, MVP'06

Hierarchical Mappings

- Combine several mapping techniques in a structured (hierarchical) way.
- Task mapping of a binary tree (quicksort) does not use all processors.
 - Mapping based on task dependency graph (hierarchy) & block.

Binary Tree -> Hierarchical Block Mapping

Figure 3.40 An example of hierarchical mapping of a task-dependency graph. Each node represented by an array is a supertask. The partitioning of the arrays represents subtasks, which are mapped onto eight processes.

Schemes for Dynamic Mapping

- Centralized Schemes.
 - Master manages pool of tasks.
 - Slaves obtain work.
 - Limited scalability.
- Distributed Schemes.
 - Processes exchange tasks to balance work.
 - Not simple, many issues.

Minimizing Interaction Overheads

- Maximize data locality.
 - Minimize volume of data-exchange.
 - Minimize frequency of interactions.
- Minimize contention and hot spots.
 - Share a link, same memory block, etc...
 - Re-design original algorithm to change the interaction pattern.

Minimizing Interaction Overheads

- Overlapping computations with interactions – to reduce idling.
 - Initiate interactions in advance.
 - Non-blocking communications.
 - Multi-threading.
- Replicating data or computation.
- Group communication instead of point to point.
- Overlapping interactions.

24-02-2006

Overlapping Interactions

Figure 3.41 Illustration of overlapping interactions in broadcasting data from one to four processes.

Parallel Algorithm Models

- Data parallel model.
 - Tasks statically mapped.
 - Similar operations on different data.
 - SIMD.
- Task graph model.
 - Start from task dependency graph.
 - Use task interaction graph to promote locality.

Parallel Algorithm Models

- Work pool (or task pool) model.
 - No pre-mapping centralized or not.
- Master-slave model.
 - Master generates work for slaves allocation static or dynamic.
- Pipeline or producer consumer model.
 - Stream of data traverses processes stream parallelism.