
Principle Of Parallel Algorithm
Design (cont.)

Alexandre David
B2-206

24-02-2006 Alexandre David, MVP'06 2

Today
Characteristics of Tasks and Interactions
(3.3).
Mapping Techniques for Load Balancing
(3.4).
Methods for Containing Interaction
Overhead (3.5).
Parallel Algorithm Models (3.6).

24-02-2006 Alexandre David, MVP'06 3

So Far…
Decomposition techniques.

Identify tasks.
Analyze with task dependency & interaction
graphs.
Map tasks to processes.

Now properties of tasks that affect a good
mapping.

Task generation, size, and size of data.

24-02-2006 Alexandre David, MVP'06 4

Task Generation
Static task generation.

Tasks are known beforehand.
Apply to well-structured problems.

Dynamic task generation.
Tasks generated on-the-fly.
Tasks & task dependency graph not available
beforehand.

24-02-2006 Alexandre David, MVP'06 5

Task Sizes
Relative amount of time for completion.

Uniform – same size for all tasks.
Matrix multiplication.

Non-uniform.
Optimization & search problems.

24-02-2006 Alexandre David, MVP'06 6

Size of Data Associated with
Tasks
Important because of locality reasons.
Different types of data with different sizes

Input/output/intermediate data.

Size of context – cheap or expensive
communication with other tasks.

24-02-2006 Alexandre David, MVP'06 7

Characteristics of Task
Interactions
Static interactions.

Tasks and interactions known beforehand.
And interaction at pre-determined times.

Dynamic interactions.
Timing of interaction unknown.
Or set of tasks not known in advance.

24-02-2006 Alexandre David, MVP'06 8

Characteristics of Task
Interactions
Regular interactions.

The interaction graph follows a pattern.

Irregular interactions.
No pattern.

24-02-2006 Alexandre David, MVP'06 9

Example: Image Dithering

24-02-2006 Alexandre David, MVP'06 10

Example: Sparse Matrix*Vector

24-02-2006 Alexandre David, MVP'06 11

Characteristics of Task
Interactions
Data sharing interactions:

Read-only interactions.
Read only data associated with other tasks.

Read-write interactions.
Read & modify data of other tasks.

24-02-2006 Alexandre David, MVP'06 12

Characteristics of Task
Interactions
One-way interactions.

Only one task initiates and completes the
communication without interrupting the
other one.

Two-way interactions.
Producer – consumer model.

24-02-2006 Alexandre David, MVP'06 13

Mapping Techniques for Load
Balancing
Map tasks onto processes.
Goal: minimize overheads.

Communication.
Idling.

Uneven load distribution may cause idling.
Constraints from task dependency → wait for
other tasks.

24-02-2006 Alexandre David, MVP'06 14

Example

24-02-2006 Alexandre David, MVP'06 15

Mapping Techniques
Static mapping.

NP-complete problem for non-uniform tasks.
Large data compared to computation.

Dynamic mapping.
Dynamically generated tasks.
Task size unknown.

24-02-2006 Alexandre David, MVP'06 16

Schemes for Static Mapping
Mappings based on data partitioning.
Mappings based on task graph partitioning.
Hybrid mappings.

24-02-2006 Alexandre David, MVP'06 17

Array Distribution Scheme
Combine with “owner computes” rule to
partition into sub-tasks.

1-D block distribution scheme.

24-02-2006 Alexandre David, MVP'06 18

Block Distribution cont.

Generalize to higher dimensions: 4x4, 2x8.

24-02-2006 Alexandre David, MVP'06 19

Example: Matrix*Matrix
Partition output of C=A*B.
Each entry needs the same amount of
computation.
Blocks on 1 or 2 dimensions.
Different data sharing patterns.
Higher dimensional distributions

means we can use more processes.
sometimes reduces interaction.

24-02-2006 Alexandre David, MVP'06 20

24-02-2006 Alexandre David, MVP'06 21

Imbalance Problem
If the amount of computation associated
with data varies a lot then block
decomposition leads to imbalances.
Example: LU factorization (or Gaussian
elimination).

Computations

24-02-2006 Alexandre David, MVP'06 22

LU Factorization
Non singular square matrix A (invertible).
A = L*U.
Useful for solving linear equations.

L

U
A

24-02-2006 Alexandre David, MVP'06 23

LU Factorization

In practice we work on A.

N steps

24-02-2006 Alexandre David, MVP'06 24

LU Algorithm
Proc LU(A)
begin

for k := 1 to n-1 do
for j := k+1 to n do

A[j,k] := A[j,k]/A[k,k]
endfor
for j := k+1 to n do

for i := k+1 to n do
A[i,j] := A[i,j] – A[i,k]*A[k,j]

endfor
endfor

endfor
end

Normalize L
U[k,j] := A[k,j]/L[k,k]

U[k,k]

L[j,k]

L[i,k] U[k,j] L

U

A

24-02-2006 Alexandre David, MVP'06 25

Another Variant

for k := 1 to n-1 do
for j := k+1 to n do

A[k,j] := A[k,j]/A[k,k]
for i := k+1 to n do

A[i,j] := A[i,j] – A[i,k]*A[k,j]
endfor

endfor
endfor

24-02-2006 Alexandre David, MVP'06 26

Decomposition

24-02-2006 Alexandre David, MVP'06 27

Cyclic and Block-Cyclic
Distributions
Idea:

Partition an array into many more blocks than
available processes.
Assign partitions (tasks) to processes in a
round-robin manner.

→ each process gets several non adjacent
blocks.

24-02-2006 Alexandre David, MVP'06 28

Block-Cyclic Distributions

a) Partition 16x16 into 2*4 groups of 2 rows.
αp groups of n/αp rows.

b) Partition 16x16 into square blocks of size
4*4 distributed on 2*2 processes.
α2p groups of n/α2p squares.

24-02-2006 Alexandre David, MVP'06 29

Randomized Distributions

Irregular distribution with regular mapping!
Not good.

24-02-2006 Alexandre David, MVP'06 30

1-D Randomized Distribution

Permutation

24-02-2006 Alexandre David, MVP'06 31

2-D Randomized Distribution

2-D block random distribution.

Block mapping.

24-02-2006 Alexandre David, MVP'06 32

Graph Partitioning
For sparse data structures and data
dependent interaction patterns.

Numerical simulations. Discretize the problem
and represent it as a mesh.

Sparse matrix: assign equal number of
nodes to processes & minimize interaction.
Example: simulation of dispersion of a
water contaminant in Lake Superior.

24-02-2006 Alexandre David, MVP'06 33

Discretization

24-02-2006 Alexandre David, MVP'06 34

Partitioning Lake Superior

Random partitioning. Partitioning with minimum
edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.

24-02-2006 Alexandre David, MVP'06 35

Mappings Based on Task
Partitioning
Partition the task dependency graph.

Good when static task dependency graph with
known task sizes.

Mapping on 8
processes.

24-02-2006 Alexandre David, MVP'06 36

Sparse Matrix*Vector

24-02-2006 Alexandre David, MVP'06 37

Sparse Matrix*Vector

24-02-2006 Alexandre David, MVP'06 38

Hierarchical Mappings
Combine several mapping techniques in a
structured (hierarchical) way.
Task mapping of a binary tree (quicksort)
does not use all processors.

Mapping based on task dependency graph
(hierarchy) & block.

24-02-2006 Alexandre David, MVP'06 39

Binary Tree -> Hierarchical Block Mapping

24-02-2006 Alexandre David, MVP'06 40

Schemes for Dynamic Mapping
Centralized Schemes.

Master manages pool of tasks.
Slaves obtain work.
Limited scalability.

Distributed Schemes.
Processes exchange tasks to balance work.
Not simple, many issues.

24-02-2006 Alexandre David, MVP'06 41

Minimizing Interaction
Overheads
Maximize data locality.

Minimize volume of data-exchange.
Minimize frequency of interactions.

Minimize contention and hot spots.
Share a link, same memory block, etc…
Re-design original algorithm to change the
interaction pattern.

24-02-2006 Alexandre David, MVP'06 42

Minimizing Interaction
Overheads
Overlapping computations with interactions
– to reduce idling.

Initiate interactions in advance.
Non-blocking communications.
Multi-threading.

Replicating data or computation.
Group communication instead of point to
point.
Overlapping interactions.

24-02-2006 Alexandre David, MVP'06 43

Overlapping Interactions

24-02-2006 Alexandre David, MVP'06 44

Parallel Algorithm Models
Data parallel model.

Tasks statically mapped.
Similar operations on different data.

SIMD.

Task graph model.
Start from task dependency graph.
Use task interaction graph to promote locality.

24-02-2006 Alexandre David, MVP'06 45

Parallel Algorithm Models
Work pool (or task pool) model.

No pre-mapping – centralized or not.

Master-slave model.
Master generates work for slaves – allocation
static or dynamic.

Pipeline or producer – consumer model.
Stream of data traverses processes – stream
parallelism.

