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Today

= Characteristics of Tasks and Interactions
(3.3).

= Mapping Techniques for Load Balancing
(3.4).

= Methods for Containing Interaction
Overhead (3.5).

= Parallel Algorithm Models (3.6).



iSo Far...

= Decomposition technigues.
= ldentify tasks.

= Analyze with task dependency & interaction
graphs.

= Map tasks to processes.
= Now properties of tasks that affect a good
mapping.

= Task generation, size, and size of data.



Task Generation

= Static task generation.
= Tasks are known beforehand.
= Apply to well-structured problems.

= Dynamic task generation.

= Tasks generated on-the-fly.

= Tasks & task dependency graph not available
beforehand.



Task Sizes

= Relative amount of time for completion.
= Uniform — same size for all tasks.
= Matrix multiplication.

= Non-uniform.
= Optimization & search problems.



Size of Data Associated with

Tasks

= Important because of loca
= Different types of data wit

Ity reasons.
N different sizes

» Input/output/intermediate C

= Size of context — cheap or
communication with other

ata.

expensive
tasks.



Characteristics of Task
Interactions

= Static Interactions.
= Tasks and interactions known beforehand.
= And Interaction at pre-determined times.
= Dynamic interactions.
= Timing of interaction unknown.
= Or set of tasks not known in advance.



Characteristics of Task
i Interactions

= Reqgular interactions.
= The Interaction graph follows a pattern.

= lrregular interactions.
= NO pattern.
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Figure 3.22 The regular two-dimensional task-interaction graph for image dithering. The pixels

with dotted outline require color values from the boundary pixels of the neighboring tasks.



iExample: Sparse Matrix*Vector
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Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding task-
interaction graph. In the decomposition Task i computes > Jo_ ;-1 ;. 20 AL, J1.51J1.
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Characteristics of Task
i Interactions

= Data sharing interactions:
= Read-only interactions.
« Read only data associated with other tasks.

= Read-write interactions.
= Read & modify data of other tasks.
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Characteristics of Task
i Interactions

= One-way Interactions.

= Only one task initiates and completes the
communication without interrupting the
other one.

= Two-way Interactions.
= Producer — consumer model.
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Mapping Technigques for Load
Balancing

= Map tasks onto processes.

= Goal: minimize overheads.
= Communication.
= Idling.
= Uneven load distribution may cause idling.

= Constraints from task dependency — wait for
other tasks.
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Figure 3.23  Two mappings of a hypothetical decomposition with a synchronization.
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Mapping Techniques

= Static mapping.
= NP-complete problem for non-uniform tasks.
= Large data compared to computation.
= Dynamic mapping.
= Dynamically generated tasks.
= Task size unknown.
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iSchemeS for Static Mapping

= Mappings based on data partitioning.
= Mappings based on task graph partitioning.
= Hybrid mappings.
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iArray Distribution Scheme

= Combine with “owner computes” rule to
partition into sub-tasks.

row-wise distribution column-wise distribution

Ps B\ P | B| Ps| Py Ps| B5| P

P 1-D block distribution scheme.




Block Distribution cont.

24-02-2006

Generalize to higher dimensions: 4x4, 2x8.

Alexandre David, MVP'06
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Example: Matrix*Matrix

Partition output of C=A*B.

Each entry needs the same amount of
computation.

Blocks on 1 or 2 dimensions.
Different data sharing patterns.

Higher dimensional distributions
= Means we can use /more processes.
= sometimes reduces interaction.
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Figure 3.26 Data sharing needed for matrix multiplication with (a) one-dimensional and (b) two-
dimensional partitioning of the output matrix. Shaded portions of the input matrices 4 and B are
required by the process that computes the shaded portion of the output matrix C'.



ilmbalance Problem

= If the amount of computation associated
with data varies a lot then block
decomposition leads to /mbalances.

= Example: LU factorization (or Gaussian
elimination).

Computations

24-02-2006 Alexandre David, MVP'06 21



iLU Factorization

= Non singular square matrix A (invertible).
= A=L*U.
= Useful for solving linear equations.

24-02-2006 Alexandre David, MVP'06 22



iLU Factorization

In practice we work on A.

24-02-2006 Alexandre David, MVP'06

N steps
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iLU Algorithm

Proc LU(A)
begin ULk k]
for k:=1+to n-1do
PR do/ Normalize L
/e'n?:IE‘Jc;':] ALK ALK Ulk,j] = ALKk, j1I/L[Kk K]
L[j.K] For | = kil Tonde
for i := k+1 to n do A
Alij]:= Al j]- ALl kT*ALk,j]
endfor I T
endfor
endfor L[i,k] U[k,j]

24-02-2o€d‘ld Alexandre David, MVP'06 24



iAnother Variant

for k:=1ton-1do
for j:= k+l tondo
Alk,j] = Ak jI/ATkK]
fori:= k+ltondo
AliLj] = AliLj]- AL KT*ALK,]]
endfor
endfor
endfor
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iDecomposition
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Figure 3.27 A decomposition of LU factorization into 14 tasks.

24-02-2006 Alexandre David, MVP'06 26



Cyclic and Block-Cyclic
iDistributions

s ldea:

» Partition an array into many more blocks than
avallable processes.

= Assign partitions (tasks) to processes in a
round-robin manner.

= —> each process gets several non adjacent
blocks.
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Block-Cyclic Distributions
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iRandomized Distributions

Irregular distribution with regular mapping!
Not good.
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il—D Randomized Distribution

V=1[0,1,2,3,4,5,6,7,8,9,10, 11] >Per'muTa’ri0n
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Figure 3.32 A one-dimensional randomized block mapping of 12 blocks onto four process (i.e.,
o = 3).
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iZ—D Randomized Distribution
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iGraph Partitioning

= For sparse data structures and data
dependent interaction patterns.

= Numerical simulations. Discretize the problem
and represent it as a mesh.

= Sparse matrix: assign equal number of
nodes to processes & minimize interaction.

= Example: simulation of dispersion of a
water contaminant in Lake Superior.
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iDiscretization
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Figure 3.34 A mesh used to model Lake Superior.
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iPartitioning Lake Superior

Random partitioning.  Partitioning with minimum

24-02-2006

edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.

Alexandre David, MVP'06
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Mappings Based on Task
Partitioning

= Partition the task dependency graph.

= Good when static task dependency graph with
known task sizes.

o () Mapping on 8
processes.
oQ 4Q
O Q Q Q

OOQQQQOQ
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iSparse Matrix*Vector
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Process 2
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Figure 3.38 A mapping for sparse matrix-vector multiplication onto three processes. The list Ci
contains the indices of » that Process i needs to access from other processes.
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Sparse Matrix*Vector

Cl1=1(0,5,6) Process 1

Process O
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Figure 3.39 Reducing interaction overhead in sparse matrix-vector multiplication by partitioning
the task-interaction graph.

24-02-2006 Alexandre David, MVP'06 37



iHierarchicaI Mappings

= Combine several mapping techniques in a
structured (hierarchical) way.

= Task mapping of a binary tree (quicksort)
does not use all processors.

= Mapping based on task dependency graph
(hierarchy) & block.
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Binary Tree -> Hierarchical Block Mapping
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Figure 3.40 An example of hierarchical mapping of a task-dependency graph. Each node rep-
resented by an array is a supertask. The partitioning of the arrays represents subtasks, which are
mapped onto eight processes.
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Schemes for Dynamic Mapping

= Centralized Schemes.
= Master manages pool of tasks.
= Slaves obtain work.
= Limited scalability.

= Distributed Schemes.
= Processes exchange tasks to balance work.
= Not simple, many issues.
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Minimizing Interaction
iOverheads

= Maximize data locality.
= Minimize volume of data-exchange.
= Minimize frequency of interactions.

= Minimize contention and hot spots.
= Share a link, same memory block, etc...

= Re-design original algorithm to change the
Interaction pattern.
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Minimizing Interaction
iOverheads

= Overlapping computations with interactions
— to reduce idling.

= |nitiate interactions in advance.
= Non-blocking communications.
= Multi-threading.

= Replicating data or computation.

= Group communication instead of point to
point.

= Overlapping interactions.
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Overlapping Interactions
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Figure 3.41 lllustration of overlapping interactions in broadcasting data from one to four processes.



iParaIIeI Algorithm Models

= Data parallel model.
= Tasks statically mapped.

« Similar operations on different data.
= SIMD.

= Task graph model.
» Start from task dependency graph.
= Use task interaction graph to promote locality.
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iParaIIeI Algorithm Models

= Work pool (or task pool) model.
= No pre-mapping — centralized or not.

s Master-slave model.

= Master generates work for slaves — allocation
static or dynamic.

= Pipeline or producer — consumer model.

= Stream of data traverses processes — stream
parallelism.
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