Principle Of Parallel Algorithm

!'_ Design (cont.)

Alexandre David
B2-206

Today

= Characteristics of Tasks and Interactions
(3.3).

= Mapping Techniques for Load Balancing
(3.4).

= Methods for Containing Interaction
Overhead (3.5).

= Parallel Algorithm Models (3.6).

iSo Far...

= Decomposition technigues.
= ldentify tasks.

= Analyze with task dependency & interaction
graphs.

= Map tasks to processes.
= Now properties of tasks that affect a good
mapping.

= Task generation, size, and size of data.

Task Generation

= Static task generation.
= Tasks are known beforehand.
= Apply to well-structured problems.

= Dynamic task generation.

= Tasks generated on-the-fly.

= Tasks & task dependency graph not available
beforehand.

Task Sizes

= Relative amount of time for completion.
= Uniform — same size for all tasks.
= Matrix multiplication.

= Non-uniform.
= Optimization & search problems.

Size of Data Associated with

Tasks

= Important because of loca
= Different types of data wit

Ity reasons.
N different sizes

» Input/output/intermediate C

= Size of context — cheap or
communication with other

ata.

expensive
tasks.

Characteristics of Task
Interactions

= Static Interactions.
= Tasks and interactions known beforehand.
= And Interaction at pre-determined times.
= Dynamic interactions.
= Timing of interaction unknown.
= Or set of tasks not known in advance.

Characteristics of Task
i Interactions

= Reqgular interactions.
= The Interaction graph follows a pattern.

= lrregular interactions.
= NO pattern.

ing

> Tasks

A
Y

O O O

“ 7/

f)

—~~

N/

—~

N/

—~~

N/

—~~

NS

O
O

—
NS

FO &

P

N/

—

N/

—~

N/

A
Y

Image Dither

—~~

A

—

N/

—~

A

—~~

A

—~

N/

—~

L4

—

N/

—

N/

[
~ 7/

ONONGO,

ONONONG

~~

N/

—

N/

—

N/

—~

N/

Example

A
Y

O O O

</

R

A
Y

oy
~ /

O OO
O 000

Figure 3.22 The regular two-dimensional task-interaction graph for image dithering. The pixels

with dotted outline require color values from the boundary pixels of the neighboring tasks.

iExample: Sparse Matrix*Vector

b

)
(8]
L
o B
.

@

91011

@~

Task 0

[I JE=
000 —

Task 11 o O

(a) (b)

Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding task-
interaction graph. In the decomposition Task i computes > Jo_ ;-1 ;. 20 AL, J1.51J1.

10

Characteristics of Task
i Interactions

= Data sharing interactions:
= Read-only interactions.
« Read only data associated with other tasks.

= Read-write interactions.
= Read & modify data of other tasks.

11

Characteristics of Task
i Interactions

= One-way Interactions.

= Only one task initiates and completes the
communication without interrupting the
other one.

= Two-way Interactions.
= Producer — consumer model.

12

Mapping Technigques for Load
Balancing

= Map tasks onto processes.

= Goal: minimize overheads.
= Communication.
= Idling.
= Uneven load distribution may cause idling.

= Constraints from task dependency — wait for
other tasks.

13

‘_LExample

start synchronization
)
|

Pl 1 5 : 9

) 2| 6] 1 |10
e
|

P3 3 7 : 11
..H..‘H...‘...‘...:
|

4 8 12
P4 |
v
t=0 t=2
(a)

synchronization

A

finish start
Pl 1
P2 4
P3 i
P4

t=3 t=0

(b)

Figure 3.23 Two mappings of a hypothetical decomposition with a synchronization.

finish

14

Mapping Techniques

= Static mapping.
= NP-complete problem for non-uniform tasks.
= Large data compared to computation.
= Dynamic mapping.
= Dynamically generated tasks.
= Task size unknown.

15

iSchemeS for Static Mapping

= Mappings based on data partitioning.
= Mappings based on task graph partitioning.
= Hybrid mappings.

16

iArray Distribution Scheme

= Combine with “owner computes” rule to
partition into sub-tasks.

row-wise distribution column-wise distribution

Ps B\ P | B| Ps| Py Ps| B5| P

P 1-D block distribution scheme.

Block Distribution cont.

24-02-2006

Generalize to higher dimensions: 4x4, 2x8.

Alexandre David, MVP'06

18

Example: Matrix*Matrix

Partition output of C=A*B.

Each entry needs the same amount of
computation.

Blocks on 1 or 2 dimensions.
Different data sharing patterns.

Higher dimensional distributions
= Means we can use /more processes.
= sometimes reduces interaction.

19

Iy
P
P
P
__________________ Py
,,,,,,,,,,,,,,,,,, Ps
Fs
= Py
X P
Py
P
Py
P2
P13
Py
Pis
(a)
A B C
| |
: : Py P Py Py
| |
__________________ | |
| |
| | Py | Ps Ps | P
__________________ | | —_
X \ | -
| |
| | Py Py Py P
| |
| |
| |
: : P1n Pi3 Py Pis
| |
(b)

Figure 3.26 Data sharing needed for matrix multiplication with (a) one-dimensional and (b) two-
dimensional partitioning of the output matrix. Shaded portions of the input matrices 4 and B are
required by the process that computes the shaded portion of the output matrix C'.

ilmbalance Problem

= If the amount of computation associated
with data varies a lot then block
decomposition leads to /mbalances.

= Example: LU factorization (or Gaussian
elimination).

Computations

24-02-2006 Alexandre David, MVP'06 21

iLU Factorization

= Non singular square matrix A (invertible).
= A=L*U.
= Useful for solving linear equations.

24-02-2006 Alexandre David, MVP'06 22

iLU Factorization

In practice we work on A.

24-02-2006 Alexandre David, MVP'06

N steps

23

iLU Algorithm

Proc LU(A)
begin ULk k]
for k:=1+to n-1do
PR do/ Normalize L
/e'n?:IE‘Jc;':] ALK ALK Ulk,j] = ALKk, j1I/L[Kk K]
L[j.K] For | = kil Tonde
for i := k+1 to n do A
Alij]:= Al j]- ALl kT*ALk,j]
endfor I T
endfor
endfor L[i,k] U[k,j]

24-02-2o€d‘ld Alexandre David, MVP'06 24

iAnother Variant

for k:=1ton-1do
for j:= k+l tondo
Alk,j] = Ak jI/ATkK]
fori:= k+ltondo
AliLj] = AliLj]- AL KT*ALK,]]
endfor
endfor
endfor

25

iDecomposition

A1 A1 A3 Ly O 0 U1 Un Ul
A1 Axo Axz | — | L1 Lao O : 0 Uxr Uys
Az Az A3 L31 L3z L33 0 0 Usg3

0: Az’z
7: Ag’z
8: Aa3

Figure 3.27 A decomposition of LU factorization into 14 tasks.

24-02-2006 Alexandre David, MVP'06 26

Cyclic and Block-Cyclic
iDistributions

s ldea:

» Partition an array into many more blocks than
avallable processes.

= Assign partitions (tasks) to processes in a
round-robin manner.

= —> each process gets several non adjacent
blocks.

27

Block-Cyclic Distributions

Po

P,

HEEEE
— P 1
— P B
— Py 1 I
_Pg__Pg

HEREE

(a)

a) Partition 16x16 into 2*4 groups of 2 rows.

ap groups of n/ap rows.

b)Partition 16x16 into square blocks of size

4*4 distributed on 2*2 processes.
a?p groups of n/a?p squares.

(b)

28

iRandomized Distributions

Irregular distribution with regular mapping!
Not good.

29

il—D Randomized Distribution

V=1[0,1,2,3,4,5,6,7,8,9,10, 11] >Per'muTa’ri0n

random(V)=18,2,6,0,3,7, 11, 1,9, 5, 4, 10]

2 2 2 2 2 2 2 2 2 2 2

mapping=8 2 6 03 7 111 9 5 410
| | | | |

Po Py Py Pj

Figure 3.32 A one-dimensional randomized block mapping of 12 blocks onto four process (i.e.,
o = 3).

30

iZ—D Randomized Distribution

0123 456789101112131415

6

|
5

13|

0

7
12

3
15
4 i
11

106 40113 187142139 51512

oM : - W o:o: oo W
1408 0 o o]
of 1 77 il

2-D block random distribution.

Block mapping.

e IBE
2| o []
(c)
>

31

iGraph Partitioning

= For sparse data structures and data
dependent interaction patterns.

= Numerical simulations. Discretize the problem
and represent it as a mesh.

= Sparse matrix: assign equal number of
nodes to processes & minimize interaction.

= Example: simulation of dispersion of a
water contaminant in Lake Superior.

32

iDiscretization

[N '
SN ' N SRy A
LSRR T 4(AAW “&w»“‘ SRS
P N RSN s

=\
v,
AN
é"i
vy

S o A 7avsy NUAVANA Y ‘
AL NNN T ANTIAARIIRNAL
Sy < /\ </ g

> >
RN i
PORED 'A‘
e Tav v N
' MDA g

SIS 1
Javs Avava¥ii (AT
P aavaun AN
2SO
PP ‘E 2R XD
A

2
s
=
N

Figure 3.34 A mesh used to model Lake Superior.

33

iPartitioning Lake Superior

Random partitioning. Partitioning with minimum

24-02-2006

edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.

Alexandre David, MVP'06

34

Mappings Based on Task
Partitioning

= Partition the task dependency graph.

= Good when static task dependency graph with
known task sizes.

o () Mapping on 8
processes.
oQ 4Q
O Q Q Q

OOQQQQOQ

35

iSparse Matrix*Vector

Process 0

Process 1

Process 2

A
012345678 91011
o0 o o
000 o0

o006 00
L [

[LI [
o0 000 o
o0 0000000

o o0

[o (@

000 LI

o o0

[[

CO = (4.5,6,7,8)

Cl1=(0,12,3.8,9,10,11)

C2=(0,4,5,6)

Figure 3.38 A mapping for sparse matrix-vector multiplication onto three processes. The list Ci
contains the indices of » that Process i needs to access from other processes.

36

Sparse Matrix*Vector

Cl1=1(0,5,6) Process 1

Process O

CO=(1,2,6,9)

10 11

Process 2 C2=(1,2,4,5,7,8)

Figure 3.39 Reducing interaction overhead in sparse matrix-vector multiplication by partitioning
the task-interaction graph.

24-02-2006 Alexandre David, MVP'06 37

iHierarchicaI Mappings

= Combine several mapping techniques in a
structured (hierarchical) way.

= Task mapping of a binary tree (quicksort)
does not use all processors.

= Mapping based on task dependency graph
(hierarchy) & block.

38

Binary Tree -> Hierarchical Block Mapping

I I I
PO1P11P41P5

- -+ = o= == =

P2'P3'PG' P7

/\

I I
PO 1Pl P41 P5

P2 P3 P6 | P7

N PN

PO P P21 P3 P41 P5 P61 P7

PO Pl P2 P3 P4 P5 P6 P7

Figure 3.40 An example of hierarchical mapping of a task-dependency graph. Each node rep-
resented by an array is a supertask. The partitioning of the arrays represents subtasks, which are
mapped onto eight processes.

39

Schemes for Dynamic Mapping

= Centralized Schemes.
= Master manages pool of tasks.
= Slaves obtain work.
= Limited scalability.

= Distributed Schemes.
= Processes exchange tasks to balance work.
= Not simple, many issues.

40

Minimizing Interaction
iOverheads

= Maximize data locality.
= Minimize volume of data-exchange.
= Minimize frequency of interactions.

= Minimize contention and hot spots.
= Share a link, same memory block, etc...

= Re-design original algorithm to change the
Interaction pattern.

41

Minimizing Interaction
iOverheads

= Overlapping computations with interactions
— to reduce idling.

= |nitiate interactions in advance.
= Non-blocking communications.
= Multi-threading.

= Replicating data or computation.

= Group communication instead of point to
point.

= Overlapping interactions.

42

Overlapping Interactions

ml ml
PO-—-—-—=P2 PO---—=>=PI
ml ml ml ml
P2----—=P3 PO--——=P1 PIl-————=P2 P2----—=>P3
| | | | | | |
i i i i i i i
t=0 | 2 t=0 1 2 3
(a) (b)
ml m?2 m3 m4
PO---—=P1 PO--———=P] PO-——-—=P1 PO-—--—=>PI
ml m2 m3 m4
pl---—P2 PIl-—-———>=P2 PIl-——>—=>P2 Pl ————>P2
ml m?2 m3 m4
P2---—P3 P2--——>P3 P2--——>P3 P2--—-—=>P3
| | | | \ | |
[[[[\ [[
t=20 | 2 3 4 5 6
(c)

Figure 3.41 lllustration of overlapping interactions in broadcasting data from one to four processes.

iParaIIeI Algorithm Models

= Data parallel model.
= Tasks statically mapped.

« Similar operations on different data.
= SIMD.

= Task graph model.
» Start from task dependency graph.
= Use task interaction graph to promote locality.

a4

iParaIIeI Algorithm Models

= Work pool (or task pool) model.
= No pre-mapping — centralized or not.

s Master-slave model.

= Master generates work for slaves — allocation
static or dynamic.

= Pipeline or producer — consumer model.

= Stream of data traverses processes — stream
parallelism.

45

