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Today
Characteristics of Tasks and Interactions 
(3.3).
Mapping Techniques for Load Balancing 
(3.4).
Methods for Containing Interaction 
Overhead (3.5).
Parallel Algorithm Models (3.6).



24-02-2006 Alexandre David, MVP'06 3

So Far…
Decomposition techniques.

Identify tasks.
Analyze with task dependency & interaction 
graphs.
Map tasks to processes.

Now properties of tasks that affect a good 
mapping.

Task generation, size, and size of data.
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Task Generation
Static task generation.

Tasks are known beforehand.
Apply to well-structured problems.

Dynamic task generation.
Tasks generated on-the-fly.
Tasks & task dependency graph not available 
beforehand.
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Task Sizes
Relative amount of time for completion.

Uniform – same size for all tasks.
Matrix multiplication.

Non-uniform.
Optimization & search problems.



24-02-2006 Alexandre David, MVP'06 6

Size of Data Associated with 
Tasks
Important because of locality reasons.
Different types of data with different sizes

Input/output/intermediate data.

Size of context – cheap or expensive 
communication with other tasks.



24-02-2006 Alexandre David, MVP'06 7

Characteristics of Task 
Interactions
Static interactions.

Tasks and interactions known beforehand.
And interaction at pre-determined times.

Dynamic interactions.
Timing of interaction unknown.
Or set of tasks not known in advance.
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Characteristics of Task 
Interactions
Regular interactions.

The interaction graph follows a pattern.

Irregular interactions.
No pattern.
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Example: Image Dithering
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Example: Sparse Matrix*Vector
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Characteristics of Task 
Interactions
Data sharing interactions:

Read-only interactions.
Read only data associated with other tasks.

Read-write interactions.
Read & modify data of other tasks.
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Characteristics of Task 
Interactions
One-way interactions.

Only one task initiates and completes the 
communication without interrupting the 
other one.

Two-way interactions.
Producer – consumer model.
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Mapping Techniques for Load 
Balancing
Map tasks onto processes.
Goal: minimize overheads.

Communication.
Idling.

Uneven load distribution may cause idling.
Constraints from task dependency → wait for 
other tasks.
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Example
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Mapping Techniques
Static mapping.

NP-complete problem for non-uniform tasks.
Large data compared to computation.

Dynamic mapping.
Dynamically generated tasks.
Task size unknown.
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Schemes for Static Mapping
Mappings based on data partitioning.
Mappings based on task graph partitioning.
Hybrid mappings.
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Array Distribution Scheme
Combine with “owner computes” rule to 
partition into sub-tasks.

1-D block distribution scheme.
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Block Distribution cont.

Generalize to higher dimensions: 4x4, 2x8.
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Example: Matrix*Matrix
Partition output of C=A*B.
Each entry needs the same amount of 
computation.
Blocks on 1 or 2 dimensions.
Different data sharing patterns.
Higher dimensional distributions

means we can use more processes.
sometimes reduces interaction.
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Imbalance Problem
If the amount of computation associated 
with data varies a lot then block 
decomposition leads to imbalances.
Example: LU factorization (or Gaussian 
elimination).

Computations
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LU Factorization
Non singular square matrix A (invertible).
A = L*U.
Useful for solving linear equations.

L

U
A
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LU Factorization

In practice we work on A.

N steps
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LU Algorithm
Proc LU(A)
begin

for k := 1 to n-1 do
for j := k+1 to n do

A[j,k] := A[j,k]/A[k,k]
endfor
for j := k+1 to n do

for i := k+1 to n do
A[i,j] := A[i,j] – A[i,k]*A[k,j]

endfor
endfor

endfor
end

Normalize L
U[k,j] := A[k,j]/L[k,k]

U[k,k]

L[j,k]

L[i,k]  U[k,j] L

U

A
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Another Variant

for k := 1 to n-1 do
for j := k+1 to n do

A[k,j] := A[k,j]/A[k,k]
for i := k+1 to n do

A[i,j] := A[i,j] – A[i,k]*A[k,j]
endfor

endfor
endfor
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Decomposition
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Cyclic and Block-Cyclic 
Distributions
Idea:

Partition an array into many more blocks than 
available processes.
Assign partitions (tasks) to processes in a 
round-robin manner.

→ each process gets several non adjacent
blocks.
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Block-Cyclic Distributions

a) Partition 16x16 into 2*4 groups of 2 rows.
αp groups of n/αp rows.

b) Partition 16x16 into square blocks of size
4*4 distributed on 2*2 processes.
α2p groups of n/α2p squares.
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Randomized Distributions

Irregular distribution with regular mapping!
Not good.
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1-D Randomized Distribution

Permutation
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2-D Randomized Distribution

2-D block random distribution.

Block mapping.
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Graph Partitioning
For sparse data structures and data 
dependent interaction patterns.

Numerical simulations. Discretize the problem 
and represent it as a mesh.

Sparse matrix: assign equal number of 
nodes to processes & minimize interaction.
Example: simulation of dispersion of a 
water contaminant in Lake Superior.
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Discretization
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Partitioning Lake Superior

Random partitioning. Partitioning with minimum
edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.
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Mappings Based on Task 
Partitioning
Partition the task dependency graph.

Good when static task dependency graph with 
known task sizes.

Mapping on 8
processes.
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Sparse Matrix*Vector
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Sparse Matrix*Vector
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Hierarchical Mappings
Combine several mapping techniques in a 
structured (hierarchical) way.
Task mapping of a binary tree (quicksort) 
does not use all processors.

Mapping based on task dependency graph 
(hierarchy) & block.
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Binary Tree -> Hierarchical Block Mapping
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Schemes for Dynamic Mapping
Centralized Schemes.

Master manages pool of tasks.
Slaves obtain work.
Limited scalability.

Distributed Schemes.
Processes exchange tasks to balance work.
Not simple, many issues.
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Minimizing Interaction 
Overheads
Maximize data locality.

Minimize volume of data-exchange.
Minimize frequency of interactions.

Minimize contention and hot spots.
Share a link, same memory block, etc…
Re-design original algorithm to change the 
interaction pattern.
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Minimizing Interaction 
Overheads
Overlapping computations with interactions 
– to reduce idling.

Initiate interactions in advance.
Non-blocking communications.
Multi-threading.

Replicating data or computation.
Group communication instead of point to 
point.
Overlapping interactions.
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Overlapping Interactions
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Parallel Algorithm Models
Data parallel model.

Tasks statically mapped.
Similar operations on different data.

SIMD.

Task graph model.
Start from task dependency graph.
Use task interaction graph to promote locality.
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Parallel Algorithm Models
Work pool (or task pool) model.

No pre-mapping – centralized or not.

Master-slave model.
Master generates work for slaves – allocation 
static or dynamic.

Pipeline or producer – consumer model.
Stream of data traverses processes – stream 
parallelism.


