2.24

Idea of the comparison with minimum congestion mapping: If an interconnection network A is mapped to a network B with a congestion r but network B is r times faster than A, then B is stricly superior than A (fewer links, at least same performance).
The mapping of a hypercube on a mesh follows the inverse of the mesh on the hypercube. A sub-cube of $\sqrt{ }$ p processors is mapped on each row of the mesh (assume mesh (on a row) to the other half (see Fig. 2.33). Every node of one half has a link another node on the other half. We have $\sqrt{ } \mathrm{p} / 2$ links. The mesh has one link (no wrap around). The congestion on a mesh without wrap-around is $\mathrm{vp} / 2$ and with wraparound $\sqrt{ } \mathrm{p} / 4$ (since we have 2 links connecting each half).
We need to check the ratio $\mathrm{vp} / 2$ (or $\mathrm{vp} / 4$) to compare the hypercube with the mesh. $\sqrt{ } 1024 / 2=16, \sqrt{ } 1024 / 4=8$. The mesh is $25 / 2=12.5$ times faster than the hypercube so a wrap-around mesh is strictly better (at least 8 times faster), not the mesh without wrap-around.

3.2				
	(a)	(b)	(c)	(d)
Maximum degree of concurrency.	8	8	8	2
Critical path length.	4	4	7	8
Maximal speedup.	$15 / 4$	$15 / 4$	$14 / 7$	$15 / 8$
Minimum number of processes to achieve the maximum speedup.	8	8	3	2
Maximum speedup if the number of processes is limited to $2,4,8$.	$15 / 8,3$, $15 / 4$	$15 / 8,3$, $15 / 4$	$7 / 4,2,2$	$15 / 8$, $15 / 8,15 / 8$

13.4

. Since any path from a start to a finish cannot be longer than $/$, there must be at least $t / 1\rceil$ independent paths from start to finish to accommodate all t nodes. Hence d must be $\geq \mid t / /$. If $d>t-1+1$, then it is impossible to have a critical path of length / or higher because $l-1$ more nodes are needed to construct this path. Hence $t / / \backslash \leq d \leq t-1+1$.

3.6, 3.7 \& 3.8

3.6) Critical paths:

- 1,2,6,10,11,13,14
- 1,2,6,10,12,13,14
- 1,4,6,10,11,13,14
- $1,4,6,10,12,13,14$
- 3.7 \& 3.8) Argument for best mappings: The length of the mappings is the same as the critical path and we cannot do better.

