2.24

Idea of the comparison with minimum congestion mapping: If an interconnection network A is mapped to a network B with a congestion *r* but network B is *r* times faster than A, then B is stricly superior than A (fewer links, at least same performance).

- performance). The mapping of a hypercube on a mesh follows the inverse of the mesh on the hypercube. A sub-cube of γ processors is mapped on each row of the mesh (assume a $\nu p^{+} \gamma p$ mesh). We count the number of hypercube links going from one half of the mesh (on a row) to the other half (see Fig. 2.3). Every node of one half has a link to another node on the other half. We have $\nu p/2$ links. The mesh has one link (no wrap-around). The congestion on a mesh without wrap-around is $\nu p/2$ and with wrap-around is $\nu p/2$ and with wrap-around is 21/2 and with wrap-around is 21/2 and with wrap-around is 22/2 and with wrap-around is 22/2. Stimes faster than the hypercube so a wrap-around mesh is strictly better (at least 8 times faster), not the mesh without wrap-around.

(a)	(b)	(c)	(d)
8	8	8	2
4	4	7	8
15/4	15/4	14/7	15/
8	8	3	2
15/8, 3, 15/4	15/8, 3, 15/4	7/4, 2, 2	15/8, 15/8,
	(a) 8 4 15/4 8 ^{15/8, 3,}	(a) (b) 8 8 4 4 15/4 15/4 8 8 15/6, 3, 15/8, 3, 15/8, 3, 15/4	(a) (b) (c) 8 8 8 4 4 7 15/4 15/4 14/7 8 8 3 15/8, 3, 15/8, 3, 15/4, 3, 7/4, 2, 2 15/4, 2, 2

