Principle of Parallel Algorithm

!'_ Design

Alexandre David
B2-206

iToday

= Preliminaries (3.1).
= Decomposition Technigues (3.2).
= Surprise.

Overview

= Introduction to parallel algorithms.
= Tasks and decomposition.
= Processes and mapping.
= Processes vs. processors.

= Decomposition technigues.
= Recursive decomposition.
« Exploratory decomposition.
=« Hybrid decomposition.

i Introduction

= Parallel algorithms have the added
dimension of concurrency.

= Typical tasks:
= ldentify concurrent works.
= Map them to processors.
= Distribute inputs, outputs, and other data.
= Manage shared resources.
= Synchronize the processors.

iDecomposing Problems

= Decomposition into corncurrent tasks.
= NO unigue solution.
= Different sizes.

« Decomposition illustrated as a directed graph:
=« Nodes = tasks.
=« Edges = dependency.

Task dependency graph

iExample: Matrix * Vector

Task dependency graph?

Matrix

N tasks, 1 task/row:
\

L ovlyyy X Vector

21-02-2006 Alexandre David, MVP'06

Example: Database Query
iProcessing

MODEL = " " CIVIC'' AND YEAR = 2001 AND
(COLOR =" "GREEN'' OR COLOR = " " WHITE)

ID# Model Year Color Dealer Price

4523 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 P NY $21,000
9834 Prius 2001 Green CA $18,000
6734 TR 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22.000
8354 Accord 2000 Green VT $18.,000
4395 2001 Red CA $17,000
7352 2002 Red WA $18,000

Table 3.1 A database storing information about used vehicles.

A Solution

ID# | Model
4523 Civic
6734 | Civic
4395 Civic
7352 Civic
Civic]

ID# | Model

Year

6734 Civic
4395 Civic

ot CNIGANDEOO'I)

2001

\ /

ID# Year
ID# | Color

7623 2001 : -
6734 2001 ID# | Color 7623 Green
5342 2001 9834 | Green
3845 2001 3476 | White 5342 | Green
4395 2001 6734 | White 8354 | Green

[20 (White | (Green}

- i i

N

/

(White OR Green)

z

[Civic AND 2001 AND (White OR Green)

)

ID#

Model

Year

Color

6734

Civic

2001

White

ID# | Color
3476 | White
7623 | Green
9834 | Green
6734 | White
5342 | Green
8354 | Green

Figure 3.2 The different tables and their dependencies in a query processing operation.

Another Solution

ID# | Model
4523 Civic
6734 | Civic
4395 Civic
7352 | Civic

(cwvie

ID# | Year
7623 2001
6734 2001
5342 2001
3845 2001
4395 2001

ID# | Color

3476 | White
6734 | White

N

ID# | Color
7623 | Green
9834 | Green
5342 | Green
8354 | Green

/

/4

(White OR Green)

(2001 AND (White or Green)) | ID# | Color

>

rf ’
,-{;x

(Civic AND 2001 AND (White OR Green))

|D#

Model

Year

Color

6734

Civie

2001

White

Year
7623 | Green | 2001
6734 White | 2001
5342 | Green | 2001

ID# | Color
3476 | White
7623 | Green
9834 | Green
6734 | White
5342 | Green
8354 | Green

iGranuIarity

= Number and size of tasks.

= Fine-grained: many small tasks.

= Coarse-grained: few large tasks.
= Related: degree of concurrency.

= Maximal degree of concurrency.
= Average degree of concurrency.

10

iCoarser Matrix * Vector

Matrix

N tasks, 3 task/row: < =
SR

21-02-2006 Alexandre David, MVP'06

! X Vector

11

iGranuIarity

= Average degree of concurrency If we take
Into account varying armount of work?

= Critical path = longest directed path

between any start & finish noc

es.

= Critical path length = sum of t
of nodes along this path.

ne weights

= Average degree of concurrency = total

amount of work / critical path

length.

12

Database Example

Critical path (3). Critical path (4).

Critical path length = 27. Critical path length = 34.
Av. deg. of concurrency = 63/27. Av. deg. of conc. = 64/34.

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1

ilnteraction Between Tasks

s Tasks often share data.

= Task Interaction graph:
= Nodes = tasks.
= Edges = interaction.
= Optional weights.

= Task dependency graph is a sub-graph of
the task interaction graph.

14

Example: Sparse Matrix
il\/lultiplication

A b
01234567 891011
Task 0 @ ° o [[] O
NOOC oo [[11 -
) oo oo [[[] N
00 o [[[| H
4 @ 0 o || N
- OEOO0 o [| H
) ooeoej0oee H
o oo [[[| [
8 |@ e o | | | H
OO0 ol | N
° oo | H
Task 11 L J o ||
(a) (b)

Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding task-
interaction graph. In the decomposition Task i computes > o -y 4p;. 720 ALi. J1.51/].

iProcesses and Mapping

= Tasks run on processors.

= Process: processing agent executing the
tasks. Not exactly like in your OS course.

= Mapping = assignment of tasks to
processes.

= APl expose processes and binding to
processors not always controlled.

16

il\/lapping Example

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1

(a) (b)

Figure 3.7 Mappings of the task graphs of Figure 3.5 onto four processes.

iProcesses VS. Processors

= Processes = logical computing agent.
= Processor = hardware computational unit.

= In general 1-1 correspondence but this
model gives better abstraction.

= Useful for hardware supporting multiple
programming paradigms.

Now remains the question:
How do you decompose?

18

iDecomposition Techniques

= Recursive decomposition.
= Divide-and-conguer.

= Data decomposition.
= Large data structure.

= Exploratory decomposition.
= Search algorithms.

= Speculative decomposition.
= Dependent choices in computations.

19

iRecursive Decomposition

= Problem solvable by divide-and-conquer:

= Decompose into sub-problems.
= Do it recursively.

= Combine the sub-solutions.
= Do it recursively.

= Concurrency: The sub-problems are solved
In parallel.

20

‘LQuicksort Example

512|111/ 1(10/6 |8 |3 |7 (4|92

113 4|2 <5< 51211110/ 6 | 8|7 | 9
1]2 <3$ 304 5687 <9< 9(12/11/10
| UX
1 2 3 4 56(7$78 9 101211
y&
5 6 7 8 10 [11]12

11 12

Figure 3.8 The quicksort task-dependency graph based on recursive decomposition for sorting a
sequence of 12 numbers.

il\/linimal Number

Figure 3.9 The task-dependency graph for finding the minimum number in the sequence {4, 9,
1,7, 8, 11, 2, 12}. Each node in the tree represents the task of finding the minimum of a pair of
numbers.

21-02-2006 Alexandre David, MVP'06

22

Data Decomposition

= 2 steps:
« Partition the data.
= Induce partition into tasks.

= How to partition data?

= Partition output data:
= Independent “sub-outputs”.

= Partition input data:
= Local computations, followed by combination.

23

il\/latrix Multiplication

(b)

Figure 3.10 (a) Partitioning of input and output matrices into 2 x 2 submatrices. (b) A decompo-
sition of matrix multiplication into four tasks based on the partitioning of the matrices in (a).

21-02-2006 Alexandre David, MVP'06 24

{Intermedlate Data Partitioning

Dy Dll 2
Dl_,_Z 1 Dl 2.2
Di1 | Doz
[?2,52,1 Dzzz
Cril €12
Ca1| C22

Linear combination
of the intermediate
results.

25

iOwner Compute Rule

= Process assigned to some data
= IS responsible for all computations associated
with it.
= Input data decomposition:

= All computations done on the (partitioned)
Input data are done by the process.

= Output data decomposition:

= All computations for the (partitioned) output
data are done by the process.

26

iEproratory Decomposition

15-puzzle example

2

3

10 7

11

6

5

2

3

13

14115

12

10

<A

6

7

o0

2

3

(a)

13

14

15

10

11

6

5

(b)

13

14

15

_
e

10

11

12

(c)

13

14

15

(d)

Figure 3.17 A 15-puzzle problem instance showing the initial configuration (a), the final configura-

tion (d), and a sequence of moves leading from the initial to the final configuration.

27

21-02-2006

s

15

task 4

task3

112]3

516|7
911011

13| 14|15

1314

iAnomanus Behavior Possible

Work depends on the order of the searchl!

o ml gm m my m m w

T Solution/

Total serial work: 2m+1 Total serial work: m

Total parallel work: 1 Total parallel work: 4m
(a) (b)
Figure 3.19 Anillustration of anomalous speedups resulting from exploratory decomposition.

29

iSpecuIative Decomposition

= Dependencies between tasks are not
known a-priori.

= How to identify independent tasks?

= Conservative approach: identify tasks that are
guaranteed to be independent.

= Optimistic approach: schedule tasks even if we
are not sure — may roll-back later.

30

Speculative Decomposition

&Example

|

System Output

System Inputs

i

System Components

Figure 3.20 A simple network for discrete event simulation.

21-02-2006 Alexandre David, MVP'06 31

