Principle of Parallel Algorithm

* Design

Alexandre David
B2-206

Today

= Preliminaries (3.1).
= Decomposition Techniques (3.2).
= Surprise.

The surprise is during the exercise session so you’'d better come.

Overview

= Introduction to parallel algorithms.
= Tasks and decomposition.
= Processes and mapping.
= Processes vs. processors.
= Decomposition techniques.
= Recursive decomposition.
= Exploratory decomposition.
= Hybrid decomposition.

Introduction

= Parallel algorithms have the added
dimension of concurrency.

= Typical tasks:
= ldentify concurrent works.
Map them to processors.
Distribute inputs, outputs, and other data.
Manage shared resources.
Synchronize the processors.

There are other courses specifically on concurrency. We won't treat the problems
proper to concurrency such as deadlocks, livelocks, theory on semaphores and
synchronization. However, we will use them, and when needed, apply techniques
to avoid problems like deadlocks.

iDecomposing Problems

= Decomposition into concurrent tasks.
= No unique solution.
= Different sizes.

= Decomposition illustrated as a directed graph:
= Nodes = tasks.
» Edges = dependency.

Task dependency graph

Many solutions are often possible but few will yield good performance and be
scalable. We have to consider the computational and storage resources needed
to solve the problems.

Size of the tasks in the sense of the amount of work to do. Can be more, less, or
unknown. Unknown in the case of a search algorithm is common.

Dependency: All the results from incoming edges are required for the tasks at the
current node.

We will not consider tools for automatic decomposition. They work fairly well only
for highly structured programs or options of programs.

iExampIe: Matrix * Vector

Task dependency graph?

Vector

Matrix

N tasks, 1 task/row:

bobabbll %

21-02-2006 Alexandre David, MVP'06

Example: Database Query
iProcessing

MODEL = " " CIVIC'" AND YEAR = 2001 AND
(COLOR = ""GREEN'' OR COLOR = """ WHITE)

ID# Model Year Color Dealer Price

4523 2002 MN $18,000
3476 1999 IL $15,000
7623 Camry 2001 NY $21,000
9834 Pri 2001 CA $18,000
6734 200 OR $17,000 |

5342 Altima 2001
3845 Maxima 2001
8354 A d 2000
4395 2001
7352 2002

FL $19,000
NY $22,000
VT $18,000
CA $17,000
WA $18,000

Table 3.1 A database storing information about used vehicles.

The question is: How to decompose this into concurrent tasks? Different tasks
may generate intermediate results that will be used by other tasks.

A Solution

ID# | Year
ID# | Model ID# | Color
il 7623 2001 o |l
523 ivic 6734 | 2001 ID# | Color 523 | Green
6734 | Civic 5342 | 2001 9834 | Green
4395 | Civic 3845 001 3476 | White 5342 | Green
7352 Civic 4395 001 6734 | White 8354 | Green

Civic 2001 (white) fc;_r?@

\ A\
\ \\ / ID# | Color
ID# | Model | Year M s s ;fj: mg:
.. . i D2 areet
6734 | Civie | 2001| | CVICAND 2001 L WtaORCroen [o834 | Grom
4395 | Civie | 2001 6734 | White
5342 | Green
8354 | Green

L\ ¥

(Civic AND 2001 AND (White OR Green) |

ID# | Model | Year | Color
6734 | Civic | 2001 | White

Figure 3.2 The different tables and their dependencies in a query processing operation.

How much concurrency do we have here? How many processors to use? Is it
optimal?

Another Solution

ID# | Model
4523 | Civic
6734 | Civic
4395 | Civic
7352 | Civic
Civic /]

ID# | Year

7623 | 2001

6734 2001

5342 | 2001

3845 2001

4395 2001
" 2001

BN

ID# | Color

ID# | Color 7623 Green

9834 | Green

3476 | White 5342 | Green

6734 | White 8354 | Green
| White | [Greenu'

/

ID# | Color
[:Whita OR Groen | | (3476 | White
— 7623 | Green
9834 | Green
6734 | White
5342 | Green
8354 | Green
. 2001 AND (White or Green) jl ID# | Color | Year
7623 | Green | 2001
6734 | White | 2001
5342 | Green | 2001
L .
Civic AND 2001 AND (White OR Green) |
ID# | Model | Year| Color
6734 | Civic | 2001 | White

Is it better or worse? Why?

iGranuIarity

= Number and size of tasks.
= Fine-grained: many small tasks.
= Coarse-grained: few large tasks.
» Related: degree of concurrency.
= Maximal degree of concurrency.
= Average degree of concurrency.

10

*Previous matrix*vector fine-grained.

*Database example coarse grained.

Degree of concurrency: Number of tasks that can be executed in parallel.
Average degree of concurrency is a more useful measure.

Assume that the tasks in the previous database examples have the same
granularity. What's their degrees of concurrency? 7/3=2.33 and 7/4=1.75.

Common sense: Increasing the granularity of decomposition and utilizing the

resulting concurrency to perform more tasks in parallel increases performance.

However, there is a limit to granularity due to the nature of the problem itself.

10

iCoarser Matrix * Vector

Vector

Matrix

N tasks, 3 task/row: < -

X

21-02-2006 Alexandre David, MVP'06

11

11

Granularity

= Average degree of concurrency if we take
Into account varying amount of work?

» Critical path = longest directed path
between any start & finish nodes.

» Critical path length = sum of the weights
of nodes along this path.

= Average degree of concurrency = total
amount of work / critical path length.

12

Weights on nodes denote the amount of work to be done on these nodes.
Longest path — shortest time needed to execute in parallel.

12

Database Example

Critical path (3).

Critical path length = 27.
Av. deg. of concurrency = 63/27.

Critical path (4).

Critical path length = 34.
Av. deg. of conc. = 64/34.

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1
- 4 N TN N N TN
(10) (10) (10) (10) (o)
e v /
Y 7/ T-,I/ \ .
\ / \
\ /
N, A
AY /
W Task 5
™,
\(a | Task 5

Interaction Between Tasks

= Tasks often share data.

= Task interaction graph:
= Nodes = tasks.
= Edges = interaction.
= Optional weights.

= Task dependency graph is a sub-graph of
the task interaction graph.

14

Another important factor is interaction between tasks on different processors.

Share data implies synchronization protocols (mutual exclusion, etc) to ensure
consistency.

Edges generally undirected. When directed edges are used, they show the
direction of the flow of data (and the flow is unidirectional).

Dependency between tasks implies interaction between them.

14

Example: Sparse Matrix
Multiplication

A b

0123456789101l _

TEIS[(.U.‘)) 1]

eeel | (oe n

OOEO0]

o L L L] | |

4 [@ 00 D n

o [e®® 0 u

L o090 000 ||

L L o0 |

8. |@ e o -

DOOEEOD]

Task 11 L] L] L]
(a) (b)

Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding task-
interaction graph. In the decomposition Task i computes » o 1y ;. jj0 4lZ, J1-51J1.

Sparse matrix: A significant number of its entries are zero and the zeros do not
conform to predefined patterns. Typically, we do not need to take the zeros into
account.

In the example: Task i owns row i of A and b.

Interaction depends on the mapping work to do / task, i.e., granularity, and
mapping tasks — processor.

15

Processes and Mapping

= Tasks run on pProcessors.

= Process: processing agent executing the
tasks. Not exactly like in your OS course.

= Mapping = assignment of tasks to
processes.

= APl expose processes and binding to
processors not always controlled.

16

Here we are not talking directly on the mapping to processors. A processor can
execute two processes.

Good mapping:

*Maximize concurrency by mapping independent tasks to different processes.
*Minimize interaction by mapping interacting tasks on the same process.

Can be conflicting, good trade-off is the key to performance.

Decomposition determines degree of concurrency.
Mapping determines how much concurrency is utilized and how efficiently.

16

(a) (b)

Figure 3.7 Mappings of the task graphs of Figure 3.5 onto four processes.

Notice that the mapping keeps one process from the previous stage because of
dependency: We can avoid interaction by keeping the same process.

17

Processes Vvs. Processors

= Processes = logical computing agent.

= In general 1-1 correspondence but this
model gives better abstraction.

= Useful for hardware supporting multiple
programming paradigms.

Now remains the question:
How do you decompose?

= Processor = hardware computational unit.

18

Example of hybrid hardware: cluster of MP machines. Each node has shared

memory and communicates with other nodes via MPI.
1. Decompose and map to processes for MPI.
2. Decompose again but suitable for shared memory.

18

Decomposition Technigues

= Recursive decomposition.
= Divide-and-conquer.
= Data decomposition.
= Large data structure.
= Exploratory decomposition.
= Search algorithms.
= Speculative decomposition.
= Dependent choices in computations.

19

19

Recursive Decomposition

= Problem solvable by divide-and-conquer:
= Decompose into sub-problems.
» Do it recursively.
= Combine the sub-solutions.
= Do it recursively.
= Concurrency: The sub-problems are solved
in parallel.

20

Small problem is to start and finish: with one process only.

20

:LQuicksort Example

(118412 <H¢ s [12[11]10] 6 [8[7 8]
1]7‘ <3¢ 3[T| _5:6'IQ|T| <9< 9 12 111|¥|
1] [z 3| [a [slel</<7]e] 9 [10[12[n1]
/N L\ Ale
5| [e] [7] [s o] [11]12]

Figure 3.8 The quicksort task-dependency graph based on recursive decomposition for sorting a
sequence of 12 numbers.

21

Recall on the quicksort algorithm:
*Choose a pivot.

*Partition the array.

*Recursive call.

*Combine result: nothing to do.

21

il\/linimal Number

Figure 3.9 The task-dependency graph for finding the minimum number in the sequence {4, 9,

1,7, 8,11, 2, 12}. Each node in the tree represents the task of finding the minimum of a pair of

numbers.

21-02-2006 Alexandre David, MVP'06

22

22

Data Decomposition

= 2 steps:
= Partition the data.
= Induce partition into tasks.
= How to partition data?
= Partition output data:
= Independent “sub-outputs”.
= Partition input data:
= Local computations, followed by combination.

23

Partitioning of input data is a bit similar to divide-and-conquer.

23

il\/latrix Multiplication

(b)

Figure 3.10 () Partitioning of input and output matrices into 2 x 2 submatrices. (b) A decompo-
sition of matrix multiplication into four tasks based on the partitioning of the matrices in (a).

21-02-2006 Alexandre David, MVP'06 24

We can partition further for the tasks. Notice the dependency between tasks.
What is the task dependency graph?

:Llntermediate Data Partitioning

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Ay B BI.B; Dy | Dy

Aa Dy | Diaz
+

Ala Doy | Dyys

A2 By1 | B2 Doz | Daza

e b D e ‘ ' Linear combination
of the intermediate
c,, c,, results.

Ca1| €22

25

Owner Compute Rule

= Process assigned to some data
= IS responsible for all computations associated
with it.
= Input data decomposition:

= All computations done on the (partitioned)
input data are done by the process.

= Output data decomposition:

= All computations for the (partitioned) output
data are done by the process.

26

26

iEproratory Decomposition

15-puzzle example

1]2]3]4 1]2]3]4 1]2]3]4 1[2]3]4
516) 8 56|78 516|7(8 51678
9[10] 7|1 9 [10] < 9 [10[11], 910|112
13(14]15]12 13|14|15]12 131415 |I2 131415

Figure 3.17 A 15-puzzle problem instance showing the initial configuration (a), the final configura-
tion (d), and a sequence of moves leading from the initial to the final configuration.

21-02-2006 Alexandre David, MVP'06 27

Suitable for search algorithms. Partition the search space into smaller parts and
search in parallel. We search the solution by a tree search technique.

27

21-02-2006

1(2]3([4

9 |10]/11
13|14 (15|12

task 4

13|14 (15|12

task 3

6|78

9 10) 11

o0 7|11

13[14(15[12

28

iAnomalous Behavior Possible

Work depends on the order of the search!

T Solution”
Total serial work: 2m+1 Total serial work: m
Total parallel work: 1 Total parallel work: 4m
(a) (b)

Figure 3.19 Aniillustration of anomalous speedups resulting from exploratory decomposition.

21-02-2006 Alexandre David, MVP'06 29

29

Speculative Decomposition

= Dependencies between tasks are not
known a-priori.
= How to identify independent tasks?

= Conservative approach: identify tasks that are
guaranteed to be independent.

= Optimistic approach: schedule tasks even if we
are not sure — may roll-back later.

30

Not possible to identify independent tasks in advance. Conservative approaches
may Yyield limited concurrency. Optimistic approach = speculative. Optimistic
approach is similar to branch prediction algorithms in processors.

30

Speculative Decomposition

[2]

-.5' '

Q. 3

£ =
3

£ o

g =

> 4]

@ @
>,
w

System Components
Figure 3.20 A simple network for discrete event simulation.
21-02-2006 Alexandre David, MVP'06 31

More aggregate work is done. Problem is to send inputs to the next stages
speculatively. Could be the case that two different kinds of outputs are possible
for A and A could start C,D,E twice.

Other approaches are possible that combine different techniques: hybrid
decompositions.

31

