Process-Processor Mapping (2.7)

Alexandre David B2-206

Underlying architecture (physical network). Processors.

Processes and their interactions.

Example

Intuitive mapping.

Random mapping and congestion.

Mapping Techniques For Graphs

- Topology embedding:
 - Embed a communication pattern into a given interconnection topology.
 Hypercube in a 2-D mesh?
 2-D mesh in a hypercube?
- Why?
 - Cost.
 - Design an algorithm for a topology but you port it to another.

Embedding Metrics

- Map a graph G(V,E) into G'(V',E').
 - Dilation: Maximum number of links of E' an edge of E is mapped onto.
 - Expansion: ratio |V'|/|V|.
 - Congestion: Maximum number of edges of E mapped on a single link of E'.

Dilation & Expansion V,E Source map V',E' Target Dilation: 3.

Expansion: 4/2 = 2.

Congestion

Embedding a Linear Array Into a Hypercube

- Map a linear array (or ring) of 2^d nodes into a d-dimensional hypercube.
- How would you do it?
- Gray code function:
- G(0,1) = 0

G(1,1) = 1

$$G(i, x+1) = \left\{ egin{array}{cc} G(i, x), & i < 2^x \ 2^x + G(2^{x+1}-1-i, x), & i \geq 2^x \end{array}
ight.$$

Figure 2.30 (a) A three-bit reflected Gray code ring; and (b) its embedding into a three-dimensional hypercube.

Gray Code Mapping

Gray Code Mapping cont.

- G(i,d): ith entry in sequence of d bits.
- Adjoining entries G(i,d) and G(i+1,d) differ at only one bit.
 - Like hypercubes -> direct link for these nodes.
- Dilation?
- Congestion?

Embedding a Mesh into a Hypercube

- Map a 2^r × 2^s wraparound mesh into a r+s dimension hypercube.
- How?
- Map (i,j) to G(i,r-1)//G(j,s-1).
 - Extension of previous coding.

2x4 mesh into a 3-D hypercube

Embedding a Mesh into a Hypercube

- Properties
 - Dilation & congestion 1 as before.
 - All nodes in the same row (mesh) are mapped to hypercube nodes with *r* identical most significant bits.
 - Similarly for columns: s identical least significant bits.
 - What it means: They are mapped on a subcube!

Embedding of a Mesh Into a Linear Array

- This time denser into sparser.
- 2-D mesh has 2p links and an array has p links.
 - There must be congestion!
 - Optimal mapping: in terms of congestion.

Easy: Linear Array Into Mesh

(a) Mapping a linear array into a 2D mesh (congestion 1).

Mesh Into Linear Array

(b) Inverting the mapping – mapping a 2D mesh into a linear array (congestion 5)

Figure 2.32 (a) Embedding a 16 node linear array into a 2-D mesh; and (b) the inverse of the mapping. Solid lines correspond to links in the linear array and normal lines to links in the mesh.

Is It Optimal?

- Bisection of
 - 2-D mesh is sqrt(p).
 - linear array is 1.
- 2-D -> linear array has congestion r.
 - Cut in half linear array: cut 1 link, but cut no more than r mapped mesh links.
 - Lower bound: $r \ge sqrt(p)$.

Hypercube Into a 2-D Mesh

- Denser into sparser again (in terms of links).
- *p* even power of 2.
- $d = \log p$ dimension.
- d/2 least (most) significant bits define subcubes of sqrt(p) nodes.
- Row/column ↔ sub-cube, inverse of hybercube to 2-D mesh mapping.

(b) P = 32

Figure 2.33 Embedding a hypercube into a 2-D mesh.

What Is The Point?

- Possible to map denser into sparser:
 - Map (expensive) logical topology into (cheaper) physical hardware!
 - Mesh with links faster by sqrt(p)/2 than hypercube links has same performance!

Cost-Performance

- Read 2.7.2.
- Remember that 2-D mesh is better in terms of performance/cost.