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iExampIe

Underlying
architecture
(physical network).
Processors.

Processes and
their interactions.
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Example

Intuitive mapping.

Random mapping
and congestion.
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Mapping Techniques For Graphs

= Topology embedding:

= Embed a communication pattern into a given
interconnection topology.
Hypercube in a 2-D mesh?
2-D mesh in a hypercube?

= Cost.

= Design an algorithm for a topology but you
port it to another.



Embedding Metrics

= Map a graph G(V,E)into GV, E).
= Dilation: Maximum number of links of E" an
edge of E is mapped onto.
=« Expansion: ratio |V'|/|V].

= Congestion: Maximum number of edges of E
mapped on a single link of E'.



iDiIation & Expansion
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iCongestion
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Embedding a Linear Array Into
a Hypercube

= Map a linear array (or ring) of 29 nodes
into a d-dimensional hypercube.

= How would you do it?
= Gray code function:
(0,1) = 0

G(L,1) = 1
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{Gray Code
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Figure 2.30
hypercube.

17-02-2006

(a) A three-bit reflected Gray code ring; and (b) its embedding into a three-dimensional

Gray Code Mapping
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iGray Code Mapping cont.

s G(I,d): " entry in sequence of d bits.

= Adjoining entries G{(7,d) and G(/+1,d) differ
at only one bit.
= Like hypercubes -> direct link for these nodes.

= Dilation?
= Congestion?
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Embedding a Mesh into a
Hypercube

= Map a 27 x 2° wraparound mesh into a r+s
dimension hypercube.

= HoOw?
= Map (7j)to G(i,r-1)//G(,s-1).

= Extension of previous coding.
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Embedding a Mesh into a
Hypercube

= Properties
= Dilation & congestion 1 as before.

= All nodes in the same row (mesh) are
mapped to hypercube nodes with ridentical
most significant bits.

= Similarly for columns: s identical least
significant bits.

= What it means: They are mapped on a sub-
cube!
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iSub-Cube Property (4x4)

Gray codes
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Embedding of a Mesh Into a
iLinear Array

= This time denser into sparser.

= 2-D mesh has Zplinks and an array has p
links.
= There must be congestion!
=« Optimal mapping: in terms of congestion.
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iEasy: Linear Array Into Mesh

(a) Mapping a linear array into a
2D mesh (congestion 1).



Mesh Into Linear Array

Congestion: 5.

i

(b) Inverting the mapping — mapping a 2D mesh into a
linear array (congestion 3)

Figure 2.32 (a) Embedding a 16 node linear array into a 2-D mesh; and (b) the inverse of the
mapping. Solid lines correspond to links in the linear array and normal lines to links in the mesh.
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Is It Optimal?

= Bisection of
= 2-D mesh is sqrt(p).
=« linear array is 1.

= 2-D -> linear array has congestion r.

« Cut in half linear array: cut 1 link, but cut no
more than rmapped mesh links.

« Lower bound: r = sgrt(p).
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Hypercube Into a 2-D Mesh

= Denser into sparser again (in terms of
links).

= peven power of 2.
= d=log p dimension.

= d/2 least (most) significant bits define sub-
cubes of sgrt(p) nodes.

= Row/column <« sub-cube, inverse of
hybercube to 2-D mesh mapping.
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Figure 2.33 Embedding a hypercube into a 2-D mesh.



What Is The Point?

= Possible to map denser into sparser:

= Map (expensive) logical topology into
(cheaper) physical hardware!

= Mesh with links faster by sgrt(p)/2 than
hypercube links has same performance!
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iCost-Performa nce

= Read 2.7.2.

= Remember that 2-D mesh is better in
terms of performance/cost.
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