Process-Processor Mapping

3 (2.7)

Alexandre David
B2-206

iExampIe

Underlying
architecture
(physical network).
Processors.

Processes and
their interactions.

1 O 2 O : O 4\
s| 6] 7] 8
0| 1o 11} 12
13 14 15| 16

Example

Intuitive mapping.

Random mapping
and congestion.

13 |

10 |

11

12 |

14 |

16 |

13

Mapping Techniques For Graphs

= Topology embedding:

= Embed a communication pattern into a given
interconnection topology.
Hypercube in a 2-D mesh?
2-D mesh in a hypercube?

= Cost.

= Design an algorithm for a topology but you
port it to another.

Embedding Metrics

= Map a graph G(V,E)into GV, E).
= Dilation: Maximum number of links of E" an
edge of E is mapped onto.
=« Expansion: ratio |V'|/|V].

= Congestion: Maximum number of edges of E
mapped on a single link of E'.

iDiIation & Expansion

O O V'E
Source
map
\Z \Z \Z V' E,
© ° ° © Target
Dilation: 3.

Expansion: 4/2 = 2.

17-02-2006 Alexandre David, MVP'06

iCongestion

O O
© —° V.E
O ; O '
S o Source
map :
v V' E

Target

Congestion: 4.

17-02-2006 Alexandre David, MVP'06

Embedding a Linear Array Into
a Hypercube

= Map a linear array (or ring) of 29 nodes
into a d-dimensional hypercube.

= How would you do it?
= Gray code function:
(0,1) = 0

G(L,1) = 1

| B G(‘E‘-,$), ¢ < ¥
Clhetl) = { 24 GATH — 1 —d,z), i2>2°

{Gray Code

1-bit Gray code 2-bit Gray code 3—bit Gray code 3—D hypercube 8—processor ring

Reflect | L 106
along this

e PRSI

Figure 2.30
hypercube.

17-02-2006

(a) A three-bit reflected Gray code ring; and (b) its embedding into a three-dimensional

Gray Code Mapping

Alexandre David, MVP'06 10

iGray Code Mapping cont.

s G(I,d): " entry in sequence of d bits.

= Adjoining entries G{(7,d) and G(/+1,d) differ
at only one bit.
= Like hypercubes -> direct link for these nodes.

= Dilation?
= Congestion?

11

Embedding a Mesh into a
Hypercube

= Map a 27 x 2° wraparound mesh into a r+s
dimension hypercube.

= HoOw?
= Map (7j)to G(i,r-1)//G(,s-1).

= Extension of previous coding.

12

(0,0) 000 0,1) 001

0,2) 011

(0,3) 010

/

\.

\

O

O—C0)

(1,0) 100 (1,1) 101

(1,2) 111

/
N

(1,3) 110

2x4 mesh into a 3-D hypercube

13

Embedding a Mesh into a
Hypercube

= Properties
= Dilation & congestion 1 as before.

= All nodes in the same row (mesh) are
mapped to hypercube nodes with ridentical
most significant bits.

= Similarly for columns: s identical least
significant bits.

= What it means: They are mapped on a sub-
cube!

14

iSub-Cube Property (4x4)

Gray codes

(0,0) 00 00

(0,1) 00 01

(0,2) 00 11

(0,3) 00 10

O

(1,0) 01 00

O

(2,0) 11 00

C

N

3,0) [il8loo

L O

N 4
_/ N O
(L0101 (1,2)0111 (1,3)01 10
O 4 f)
_/ N o
Q01101 221111 (23) 1110
() N f)
_/ N _
GhHigb1 G2 33 o
N N O)
_/ _/

Processors 1n a column have

1dentical two least—significant bits

Processors 1n a row have identical

two most—significant bits

Embedding of a Mesh Into a
iLinear Array

= This time denser into sparser.

= 2-D mesh has Zplinks and an array has p
links.
= There must be congestion!
=« Optimal mapping: in terms of congestion.

16

iEasy: Linear Array Into Mesh

(a) Mapping a linear array into a
2D mesh (congestion 1).

Mesh Into Linear Array

Congestion: 5.

i

(b) Inverting the mapping — mapping a 2D mesh into a
linear array (congestion 3)

Figure 2.32 (a) Embedding a 16 node linear array into a 2-D mesh; and (b) the inverse of the
mapping. Solid lines correspond to links in the linear array and normal lines to links in the mesh.

18

Is It Optimal?

= Bisection of
= 2-D mesh is sqrt(p).
=« linear array is 1.

= 2-D -> linear array has congestion r.

« Cut in half linear array: cut 1 link, but cut no
more than rmapped mesh links.

« Lower bound: r = sgrt(p).

19

Hypercube Into a 2-D Mesh

= Denser into sparser again (in terms of
links).

= peven power of 2.
= d=log p dimension.

= d/2 least (most) significant bits define sub-
cubes of sgrt(p) nodes.

= Row/column <« sub-cube, inverse of
hybercube to 2-D mesh mapping.

20

””” Ny \o.‘o

/
...mug up/
ﬁi il L

ﬂj@é i’&'

1 | '; -_l-

(1 N] 6 < \ Vo é; 1y
B 0l M
‘r‘mjiiimiliir. ‘h‘iﬁp’ ‘iv-"ﬂ"

(b) P =32

Figure 2.33 Embedding a hypercube into a 2-D mesh.

What Is The Point?

= Possible to map denser into sparser:

= Map (expensive) logical topology into
(cheaper) physical hardware!

= Mesh with links faster by sgrt(p)/2 than
hypercube links has same performance!

22

iCost-Performa nce

= Read 2.7.2.

= Remember that 2-D mesh is better in
terms of performance/cost.

23

