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Here we have congestion because of the mapping although the intuitive mapping
didn’t have it.



Mapping Techniques For Graphs

= Topology embedding:

« Embed a communication pattern into a given
interconnection topology.
Hypercube in a 2-D mesh?
2-D mesh in a hypercube?

= Cost.

= Design an algorithm for a topology but you
port it to another.




Embedding Metrics

= Map a graph G(V,E)into GV’ E).
= Dilation: Maximum number of links of E" an
edge of E is mapped onto.
= Expansion: ratio |V'|/|V].
= Congestion: Maximum number of edges of E
mapped on a single link of E".




iDiIation & Expansion

& 0]

- |||

o © O &)

Dilation: 3.
Expansion: 4/2 = 2.

V,E
Source

V'E
Target




iCongestion

o @
o -0
° o)
&—
map ‘
o——e

Congestion: 4.

VE
Source

V'E
Target




Embedding a Linear Array Into
a Hypercube

= Map a linear array (or ring) of 29 nodes
into a d-dimensional hypercube.

= How would you do it?
= Gray code function:
G(0,1) - 0

G(1,1) = 1

Gli,z +1) = {GML e
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Figure 2.30 (a) A three-bit reflected Gray code ring; and (b) its embedding into a three-dimensional
hypercube.

Gray Code Mapping
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iGray Code Mapping cont.
= G(id): /" entry in sequence of d bits.

= Adjoining entries G(7,d) and G(i+1,d) differ

at only one bit.

= Like hypercubes -> direct link for these nodes.

= Dilation?
= Congestion?
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Embedding a Mesh into a
Hypercube

= Map a 2" x 2° wraparound mesh into a r+s
dimension hypercube.

= How?
= Map (1)) to G(},r-1)//G(j,5-1).

= Extension of previous coding.
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The -1 is only technical because the indices go from 0 to n-1.
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Embedding a Mesh into a
Hypercube

= Properties
= Dilation & congestion 1 as before.

= All nodes in the same row (mesh) are
mapped to hypercube nodes with ridentical
most significant bits.

= Similarly for columns: s identical least
significant bits.

= What it means: They are mapped on a sub-
cube!
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&Sub-Cube Property (4x4)
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Embedding of a Mesh Into a
Linear Array

= This time denser into sparser.

= 2-D mesh has Zp links and an array has p
links.
= There must be congestion!
= Optimal mapping: in terms of congestion.
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iEasy: Linear Array Into Mesh
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(a) Mapping a linear array into a
2D mesh (congestion 1).
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Mesh Into Linear Array

Congestion: 5.

(b) Inverting the mapping — mapping a 2D mesh into a
linear array (congestion 5)

Figure 2.32 (a) Embedding a 16 node linear array into a 2-D mesh; and (b) the inverse of the
mapping. Solid lines correspond to links in the linear array and normal lines to links in the mesh.
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Is It Optimal?

= Bisection of
= 2-D mesh is sqgrt(p).
=« linear array is 1.
= 2-D -> linear array has congestion r.

« Cut in half linear array: cut 1 link, but cut no
more than rmapped mesh links.

« Lower bound: r = sgrt(p).
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The congestion has the lower bound given by bisection width of the original
topology divided by the bisection width of the target topology.

*2D mesh — linear array: sqgrt(p).

*2D mesh — ring: sqrt(p)/2.

*Hypercube — 2D mesh: (p/2)/sqgrt(p) = sqrt(p)/2.
*Hypercube — wrap around 2D mesh: sqrt(p)/4.
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Hypercube Into a 2-D Mesh

= Denser into sparser again (in terms of
links).

= peven power of 2.

= d=log p dimension.

= d/2 least (most) significant bits define sub-
cubes of sgrt(p) nodes.

= Row/column < sub-cube, inverse of
hybercube to 2-D mesh mapping.
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p=29 d even.
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Embedding a hypercube into a 2-D mesh.
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What Is The Point?

= Possible to map denser into sparser:
= Map (expensive) logical topology into
(cheaper) physical hardware!

= Mesh with links faster by sgrt(p)/2 than
hypercube links has same performance!
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Cost-Performance

= Read 2.7.2.

= Remember that 2-D mesh is better in
terms of performance/cost.
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Don't be confused:
Wrap mesh sqrt(p)*sqrt(p) nodes, 4p/2 channels.
P nodes hypercube dim log(p), p*dim/2 wires = p*log(p)/2.
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