Process-Processor Mapping

W (2.7)

Alexandre David
B2-206

iExampIe

Underlying
architecture
(physical network).
Processors.

Processes and
their interactions.

2 3 4
6 7 8
10 11 12
14 15 16

(a)

Example

1 2 3 4
0.
‘a b i d
Intuitive mapping. 5 6|l 711 g
.'é """"" .--f-‘--- "? """""" .l E..:. saene
Random mapping : : o
and congestion. oLy 100 11j; 121
...__. -@® . """""
i | Tk 1 Hd
13] 14 15 16 130__14
. [IEEEIEEIT T . @iy
m n 0 p C
(c)

Here we have congestion because of the mapping although the intuitive mapping
didn’t have it.

Mapping Techniques For Graphs

= Topology embedding:

« Embed a communication pattern into a given
interconnection topology.
Hypercube in a 2-D mesh?
2-D mesh in a hypercube?

= Cost.

= Design an algorithm for a topology but you
port it to another.

Embedding Metrics

= Map a graph G(V,E)into GV’ E).
= Dilation: Maximum number of links of E" an
edge of E is mapped onto.
= Expansion: ratio |V'|/|V].
= Congestion: Maximum number of edges of E
mapped on a single link of E".

iDiIation & Expansion

& 0]

- |||

o © O &)

Dilation: 3.
Expansion: 4/2 = 2.

V,E
Source

V'E
Target

iCongestion

o @
o -0
° o)
&—
map ‘
o——e

Congestion: 4.

VE
Source

V'E
Target

Embedding a Linear Array Into
a Hypercube

= Map a linear array (or ring) of 29 nodes
into a d-dimensional hypercube.

= How would you do it?
= Gray code function:
G(0,1) - 0

G(1,1) = 1

Gli,z +1) = {GML e

{Gray Code

1-bit Gray code ~ 2-bit Gray code 3-bit Gray code 3-D hypercube 8—processor ring

Reflect |0 e

along this

T L

N N
:.
D———0)

7
010 7 T 011)
1

@un J—Tl.l-{l])
' N,

(b)

Figure 2.30 (a) A three-bit reflected Gray code ring; and (b) its embedding into a three-dimensional
hypercube.

Gray Code Mapping

17-02-2006 Alexandre David, MVP'06 10

iGray Code Mapping cont.
= G(id): /" entry in sequence of d bits.

= Adjoining entries G(7,d) and G(i+1,d) differ

at only one bit.

= Like hypercubes -> direct link for these nodes.

= Dilation?
= Congestion?

1

11

Embedding a Mesh into a
Hypercube

= Map a 2" x 2° wraparound mesh into a r+s
dimension hypercube.

= How?
= Map (1)) to G(},r-1)//G(j,5-1).

= Extension of previous coding.

12

The -1 is only technical because the indices go from 0 to n-1.

12

110

(0.0y 000 (0.1) 001 (0,2) 011 (0.3) 010 e oL l/

(L0)y 100 (1,1) 101 (1,2) 111 (1,3 110 000 001

2x4 mesh info a 3-D hypercube

111

101

13

13

Embedding a Mesh into a
Hypercube

= Properties
= Dilation & congestion 1 as before.

= All nodes in the same row (mesh) are
mapped to hypercube nodes with ridentical
most significant bits.

= Similarly for columns: s identical least
significant bits.

= What it means: They are mapped on a sub-
cube!

14

14

&Sub-Cube Property (4x4)

000006 (00001 (020011 (0.3)0010

-; { Y} { } '

Gray codes e
(L0100 | (Lho1ol (12)0111] (13)0110

Y Yy 'y Y

S Ly Ly '

(2.0 11 o0 Do @20 23 111
™ Id '“\-' Y "
-y Ay N J

(.0 oo
A A

Processors in a column have Processors in a row have identical

identical two least—significant bits two most-significant bits

15

Embedding of a Mesh Into a
Linear Array

= This time denser into sparser.

= 2-D mesh has Zp links and an array has p
links.
= There must be congestion!
= Optimal mapping: in terms of congestion.

16

16

iEasy: Linear Array Into Mesh

-

]

(a) Mapping a linear array into a
2D mesh (congestion 1).

17

Mesh Into Linear Array

Congestion: 5.

(b) Inverting the mapping — mapping a 2D mesh into a
linear array (congestion 5)

Figure 2.32 (a) Embedding a 16 node linear array into a 2-D mesh; and (b) the inverse of the
mapping. Solid lines correspond to links in the linear array and normal lines to links in the mesh.

17-02-2006 Alexandre David, MVP'06 18

18

Is It Optimal?

= Bisection of
= 2-D mesh is sqgrt(p).
=« linear array is 1.
= 2-D -> linear array has congestion r.

« Cut in half linear array: cut 1 link, but cut no
more than rmapped mesh links.

« Lower bound: r = sgrt(p).

19

The congestion has the lower bound given by bisection width of the original
topology divided by the bisection width of the target topology.

*2D mesh — linear array: sqgrt(p).

*2D mesh — ring: sqrt(p)/2.

*Hypercube — 2D mesh: (p/2)/sqgrt(p) = sqrt(p)/2.
*Hypercube — wrap around 2D mesh: sqrt(p)/4.

19

Hypercube Into a 2-D Mesh

= Denser into sparser again (in terms of
links).

= peven power of 2.

= d=log p dimension.

= d/2 least (most) significant bits define sub-
cubes of sgrt(p) nodes.

= Row/column < sub-cube, inverse of
hybercube to 2-D mesh mapping.

20

p=29 d even.

20

(a) P=16

Figure 2.33

-iling il
S S vy y
-y . _J; i J
\/) |\, .
(by P=32

Embedding a hypercube into a 2-D mesh.

21

What Is The Point?

= Possible to map denser into sparser:
= Map (expensive) logical topology into
(cheaper) physical hardware!

= Mesh with links faster by sgrt(p)/2 than
hypercube links has same performance!

22

22

Cost-Performance

= Read 2.7.2.

= Remember that 2-D mesh is better in
terms of performance/cost.

23

Don't be confused:
Wrap mesh sqrt(p)*sqrt(p) nodes, 4p/2 channels.
P nodes hypercube dim log(p), p*dim/2 wires = p*log(p)/2.

23

