Communication Costs in Parallel Machines

Alexandre David B2-206

Topics

- Communication Costs in Parallel Machines (2.5)
 - MPI
 - Shared Address Space
- Routing Mechanisms for Interconnection Networks (2.6)

17-02-2006

Alexandre David, MVP'06

2

Communication Costs in Parallel Machines

- Sources of overhead in parallel programs:
 - Idling.
 - Contention.
 - Communication costs.
- Costs depend on
 - Programming model.
 - Network topology.
 - Routing...

17-02-2006

Alexandre David, MVP'06

3

Communication cost is one of the major overheads.

Message Passing Costs

- Total time for communication =
 - Startup time (t_s) *only once per message*
 - + Per-hop time (t_h) between directly connected nodes
 - + Per-word transfer time (t_w) 1/bandwidth.

17-02-2006

Alexandre David, MVP'06

4

The total time to transfer a message over a network comprises of the following:

- •Startup time (t_s) : Time spent at sending and receiving nodes (executing the routing algorithm, programming routers, etc.).
- •Per-hop time (t_h) : This time is a function of number of hops and includes factors such as switch latencies, network delays, etc. Also known as **node latency**.
- •Per-word transfer time (t_w) : This time includes all overheads that are determined by the length of the message. This includes bandwidth of links, error checking and correction, etc.

Store-and-Forward Routing

- Intermediate nodes
 - store the whole message.
 - forward the whole message.
- Message size m traversing / links:
 - $t_{com} = t_s + (m * t_w + t_h) * I$
 - Pay $m*t_w$ for every link.
 - In practice $t_{com} = t_s + m*t_w*/$

17-02-2006

Alexandre David, MVP'06

5

Simplify in practice because t_h is small. Obviously inefficient for long messages!

Packet Routing

- Cut the message in smaller parts.
- Advantages:
 - Lower overhead for errors (less retransmission).
 - More robust routing (different paths for packets, avoid congestion).
 - Better error correction.
 - Better resource utilization (like pipeline).
 - But... more complex protocol.

17-02-2006

Alexandre David, MVP'06

6

Comparison of store & forward with cutting the message in to 2 and 4 packets.

Approximation here.

Goal is not to remember a bunch of formulas but to understand how to model communication costs.

Cut-Through Routing

- Simplified packet routing:
 - Packets take the same path (1x routing information).
 - In sequence packet delivery (no sequencing).
 - Error detection at message level, cheap detection (for good networks).
 - Fixed size unit for packets = flow control digits (flits).
 - Same cost model with smaller s.

17-02-2006

Alexandre David, MVP'06

C

It is an optimization for interconnection networks of parallel machines since error rates are very low (dedicated network).

Simplified Cost Model

- $t_{com} = t_s + t_h^* + t_w^* m$
- Optimize:
 - Communicate in bulk (fewer t_s).
 - Minimize volume (smaller *m*).
 - Minimize number of hops (smaller /), but difficult.
- Almost same time between any pair = like a completely connected network.

17-02-2006

Alexandre David, MVP'06

11

Simplification justified by t_s (in practice) and t_w *m (for algorithm we will see) much larger than t_h *I.

Point 3 difficult because the program has little control over this parameter that is more architecture bound. Can use proximity with a good process-processor mapping.

Original expression valid for **uncongested** networks. Communication patterns have an impact on congestion. Incorporate congestion: links have to transport more messages (x), to t_w is affected and it takes x messages more time -> talk about **effective bandwidth** to scale down bandwidth (or scale up transmission time

- Difficult to have accurate models because:
 - Memory layout depends on the system.
 - Limitations with caches.
 - Invalidate/update overheads difficult to estimate (cache coherence protocols).
 - Spatial locality difficult to estimate.
 - Prefetching plays its role.
 - False sharing may be a problem.
 - Contention...

17-02-2006

Alexandre David, MVP'06

12

So, use the same model as before with much smaller t_w (for UMA machine).

- Goal: find a path from src to dest.
- Types:
 - Minimal: selects shortest path, progress at every hop – prone to congestion
 - vs. non-minimal: may use longer path to avoid congestion.
 - Deterministic: finds a unique path
 - vs. adaptive: use current state to find a path.

17-02-2006

Alexandre David, MVP'06

13

Common issue is congestion.

- Prevents deadlock.
 - Use dimension ordered routing.
 - XY-routing for 2-D mesh.
 - E-cube routing for hypercubes.
- Avoids hot-spots.
 - Two-step routing may be used.

17-02-2006

Alexandre David, MVP'06

14

Deterministic minimal routing commonly used: dimension ordered routing. Use a numbering scheme for channels determined by the dimension.

Two-step routing: 1) choose an intermediate randomly, 2) route.

E-Cube Routing

- N-dimension hypercube:
 - Nodes have N neighbors.
 - 2^N nodes.
 - Numbering scheme s.t. change 1 bit along any dimension.
- Routing: progress towards a goal number.

17-02-2006

Alexandre David, MVP'06

16

