2.16

Partitioning the mesh into two equal parts of $\mathrm{p} / 2$ processors each would leave $\sqrt{ }$ communication links between the partitions. The bisection width is $\sqrt{ } \mathrm{p}$

- The network has a bus underlying infrastructure so by configuring the network appropriately, the diameter is $0(1)$. That can be debated because of the need for re-configuration and the fact that other parts of the network may be cut, leaving more than 1 link for processors to communicate.
- There are p processors, 6 switching nodes per processor, so $6 p$ switching nodes in total.
- Number of communication links is $2(p-\sqrt{ })$. It would be $2 p$ with wraparound so we remove $2 \sqrt{ }$ p for the wrap-around links.
- Advantages and disadvantages: We discussed them during the exercise session.

2.17

. Partitioning the mesh into two equal parts of $\mathrm{p} / 2$ processors each would leave at least $\sqrt{ }$ p links between the partitions. This is similar to the ordinary 2-D mesh. The bisection width is $\sqrt{ } \mathrm{p}$.

- For the diameter we consider the processors at the two extremities of the mesh. As for the 2-D mesh we traverse a full row and a full column, i.e., two binary trees here. The binary tree has height log $\sqrt{ }$ p we go up and down the tree for each of the dimension: $2 \log \sqrt{ } p+2 \log \sqrt{ } p=2 \log p$.
- Number of switches: Each row and column has $\sqrt{ } \mathrm{p}$-1 switches. There are $\sqrt{ } p$ rows and $\sqrt{ } \mathrm{p}$ columns. Total is $2 \sqrt{ } \mathrm{p}(\sqrt{ } \mathrm{p}-1)$ switches.

