Physical Organization of
Parallel Platforms

!'_ The PRAM Model

Alexandre David
B2-206

Today

= Introduction to Parallel Algorithms (Sven
Skyum)
= PRAM model
= Optimality
=« Examples

= Physical Organization of Parallel Platforms
(2.4)

iStandard RAM Model

s Standard Random Access Machine:

= Each operation
load, store, jump, add, etc ...

= takes one unit of time.
= Simple, generally one model.

iMuIti-processor Machines

= Numerous architectures
— different models.

= Difference in communication
= Synchronous
= Asynchronous

= Difference in memory layout

= NUMA
= UMA

iPRAM Model

= A PRAM consists of

= a global access memory (i.e. shared)

= a set of processors running the same
program (though not always), with a
private stack.

= A PRAM is synchronous.
= Unlimited resources.

iCIasses of PRAM

s How to resolve contention?
= EREW PRAM - exclusive read, exclusive write

= CREW PRAM - concurrent read, exclusive
write

= ERCW PRAM - exclusive read, concurrent
write

= CRCW PRAM - concurrent read, concurrent
write

iExampIe: Sequential Max

Function smax(A,n)

end

m .= -oo
fori:=1tondo

m := max{m,A[i]}
od
smax = m

Time O(n)

iExampIe: Sequential Max (bis)

Function smax2(A,n) Time O(n)
for i :=1ton/2 do
B[i] := max{A[2i-1] A[2i]}

od
if n= 2 then
smax?2 := B[1]
else
smax?2 := smax2(B,n/2)
fi

end

iExampIe: Parallel Max

Function smax2(A,n) [p1,p,,....p,/z] Time O(logn)

for i :=1+to n/2 pardo
p;: B[i] = max{A[2i-1],A[2i]}

od
if n= 2 then
p;: smax2 := B[1]
else
smax2 := smax2(B,n/2) [p1.ps,....pn 4]
fi

end

Analysis of the Parallel Max

= Time: O(logn) for n/2 processors.

s Work done?

= p(n)=n/2 number of processors.
= {(n)time to run the algorithm.

= W(n)=p(n)*t(n) work done.
Here w(n)=0(nlogn).

10

iOptimaIity

Definition

If w(n)is of the same order as
the time for the best known
sequential algorithm, then the
parallel algorithm is said to be
optimal.

11

iDesign Principle

Construct optimal algorithms
to run as fast as possible.

Construct optimal algorithms
using as many processors as
possible!

12

iBrent’s Scheduling Principle

Theorem

If a parallel computation consists of
k phases

taking time #,715,.,1;
using a;,a,,...,a, processors
in phases 1,2,...,.k
then the computation can be done in time

O(a/p+1) using p processors where
t=sum(7), a=sum(at).

13

Previous Example

= k phases = logn.

= [; = constant time.

s d,= n/2,n/4,...,1 processors.

= With p processors we can use time
O(logn+n/p).

= Choose p=0(n/logn) — time O('logn) and
this is optimal!

14

iPrefix Computations

Input: array A[l..n] of numbers.
Output: array B[1..n] such that B[k] = sum(i:1..k) A[i]
Sequential algorithm:
function prefix*(A,n) Time O(n)
B[1] := A[1]
fori=2 to ndo
B[i] := B[i-1]+A[i]

od
end

15

Parallel Prefix Computation

unction prefix*(A,n)[p;,....p,]
p: B[1]:= A[1]
if n>1 then
for i =1ton/2 pardo
p;: Cli]l:=A[2i-1]+A[2i]
od
D:=prefix*(C,n/2)[p;,....pn/]
for i =1ton/2 pardo
p: B[2i]:=DIi]
od
for i = 2 to n/2 pardo
p:: B[2i-1]:=D[i-1]+A[2i-1]
od
fi
prefix* =B
end

Prefix Computations

= [he point of this algorithm:

= It works because + is associative (i.e. the
compression works).

= It will work for any other associative
operations.

= Brent’s scheduling principle:

For any associative operator computable in O(1),
its prefix is computable in O(logn) using O(n/logn)
processors, which is optimall

17

iMerging (of Sorted Arrays)

= Rank function:
= rank(x,A,n) = 0 if x < A[1]
= rank(x,A,n) = max{i | Ali] < x}
= Computable in time O(logn) by binary
search.

= Merge A[1..n] and B[1..m] into
C[1..n+m].

= Sequential algorithm in time O(n+m).

18

iParaIIeI Merge

unction mergel(A,B,n,m)[p;,....0nm]

end

for i =1+to n pardo p;
TA[i]:= rank(A[i]-1,B,m)
CI+TALi]] = A[i)

od

for i =1to m pardo p;:
IB[i]:= rank(B[i],A,n)
C[i+IB[i]] = B[i]

od

mergel := C

19

Simulating CRCW on EREW

= Assumption on addressed memory p(n)
for some constant c.
= Simulation algorithm idea:
= Sort accesses.
= Give priority to 1st,
= Broadcast result for contentious accesses.

= Conclusion: Optimality can be kept with
EREW-PRAM when simulating a CRCW
algorithm.

20

Static vs. Dynamic Networks

Static network Indirect network

/ Switching element
Processing node

Network interface/switch

Bus Based Networks

Address %
(:
=
/ 3
\ Data _2:55
\ |
No local cache
Processor 0 Processor |
(a)
< Address é
5
=
b5
Data =
< J L J L %

Cache / Cache /

Local Memory Local Memory LO Ca l CGC h e

It it

Processor 0 Processor |

(b)
22

Processing Elements

Crossbar Networks

N

Memory Banks

A switching
element

23

iMuItistage Networks

Multistage interconnection network

Memory banks

**

Stage 2

Processors
:
|
0 I
|
|
| —
. [
' |
' | .
: L Stage 1
' |
! I
! |
! I
! |
: N
' |
! r
' |
| I
_ [
p-1 ;
|
|
L

Stage n

b-1

Figure 2.9 The schematic of a typical multistage interconnection network.

24

iPerfect Shuffle Pattern

000

001

010

011

100

101

110

111

000 = left rotate(000)

001 = left rotate(100)

010 =left rotate(001)

011 =left rotate(101)

100 = lett_rotate(010)

101 = left rotate(110)

110 = lett rotate(011)

111 =left rotate(111)

25

iSwitches in Omega Networks

X

Configurations: pass-through and cross-over.

p/2 * log p switching nodes:
log p stages, p/2 inputs & outputs.

26

‘LOmega Network

000

001

010
011

100
101

110
111

Figure 2.12 A complete omega network connecting eight inputs and eight outputs.

000
001

010
011

100
101

110
111

27

‘LBIocking in Omega Networks

000 000
001 001
010 | 010
011 ° 011
100 100
101 101
110 # | 110
lll \\‘aj lll

Figure 2.13 An example of blocking in omega network: one of the messages (010 to 111 or 110
to 100) is blocked at link AB.

Processors <-> Processors
iNetworks

N
I

(a) (b)

Figure 2.14 (a) A completely-connected network of eight nodes; (b) a Star connected network of
nine nodes.

Performant, very expensive. Bottleneck, cheaper.
14-02-2006 Alexandre David, MVP'06 29

Linear Arrays and Meshes

5 Y Y 7) ()
N N _/ _/ (j{i::> N _/ <:::}—]

(a) (b)

Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.

O—O0—0—0— O=C—C—Ch e

N ~ ~N ™ Ny /} jﬁ(\j

@ C < (<) T D . XL>/ XLJF /)
Josivesives

O—O—O—0) O—Oo—O—Op (== /)/\ -
\{i:jg“/ e s

—o—0—0— Iy O

() (b) (c)

Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

Hypercubes

O

0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube

4-D hypercube

Figure 2.17 Construction of hypercubes from hypercubes of lower dimension.

31

iTree Based Networks

Q Processing nodes

/Q\ D Switching nodes

() ()
/ \Q O/ \O o OO0 O
@ ®)

Figure 2.18 Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree
network.

14-02-2006 Alexandre David, MVP'06

32

‘LFat Trees

k

14-02-2006

b8 B8 B8 vE vE vE b

Figure 2.19 A fat tree network of 16 processing nodes.

Alexandre David, MVP'06

33

iEvaIuating The Networks

= All the previous topologies have
advantages and disadvantages.

= Important factors: cost and performance.

s Define criteria to characterize cost and
performance.

34

Criteria

s Diameter: maximum distance p, <> p,.
= Connectivity.

= Bisection width.

= Bisection bandwidth.

= Cost.

35

Figure 2.14
nine nodes.

14-02-2006

(a) (b)

(a) A completely-connected network of eight nodes; (b) a Star connected network of

Alexandre David, MVP'06

36

o—(——0— @ —0—

(a) ®)

Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.

o 4 bt B o
/h(\J
O—O—O— O—Oo—O—p D O==q@iNg
\/L AT fj\
NN N N M—" O— VC/ Heor /3/\
\/ T L/ ({/ e \>) O m e\l e
\/(Jjuf s
et S mS m® m®) BENCSSE S
(a) (b) (c)

Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

0-D hypercube 1-D hypercube

4-D hypercube

Figure 2.17 Construction of hypercubes from hypercubes of lower dimension.

38

O Processing nodes

/Q\ D Switching nodes

() ()
O/\Q({\Q O® O

(b)

Figure 2.18 Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree
network.

39

Criteria

= Diameter.

= Connectivity: measure of multiplicity of
paths.

s Bisection width.
s Bisection bandwidth.
s Cost.

40

Criteria

= Diameter.
= Connectivity.

= Bisection width: minimum number of links
to cut in order to partition the network in 2
equal halves.

s Bisection bandwidth: minimum volume of
communication allowed between 2 halves.

s Cost.

41

Figure 2.20 Bisection width of a dynamic network is computed by examining various equi-
partitions of the processing nodes and selecting th umber of edges crossing the par-
tition. In this case, each partition yields an edge cut of four. Therefore, the bisection width of this

graph is four.

42

Criteria

= Diameter.

= Connectivity.

= Bisection width.

= Bisection bandwidth.

= Cost: number of communication links, i.e.,
wires.

43

iComparing The Topologies

Table 2.1 A summary of the characteristics of various static network topologies connecting p
nodes.

Bisection Arc Cost
Network Diameter Width Connectivity (No. of links)
Completely-connected I ? /4 p—1 p
Star 2 1 1 p—=
Complete binary tree 2log((p + 1)/2) 1 1 p—1
Linear array p—1 1 1 p—1
2-D mesh, no wraparound 2(,/p — 1) NS 2 2(p — /D)
2,/p

2-D wraparound mesh 21/02/2] ' 4 2p
Hypercube log p p/2 log p (plogp)/2
) 0

Wraparound k-ary d-cube d|k/2]) 2d

44

iCache Coherence Protocols

= We need additional hardware to keep
multiple copies of the same memory
bank consistent with each other.

= We have seen that $$ is good but it
does not come for free.

s Mechanism known as cache coherence
protocol, usually described as state
machines.

45

PO Pl PO Pl
load x load x write #3, X
5
o %0
Invalidate
Memory Memory
PO Pl PO Pl
load x load x write #3, x
x =1 x =1 X = 3 X = 3
Xx =1 X =3
Update
Memory Memory
(b)
Figure 2.21 Cache coherence in multiprocessor systems: (a) Invalidate protocol; (b) Update pro-

tocol for shared variables.

read

read write

C write

flush

Figure 2.22 State diagram of a simple three-state coherence protocol.

47

Implementations of Cache
Coherence Protocols

= Different ways to implement the protocol
described by the state machine.

= Snoopy cache: good on busses.
Snoopy hardware that monitors states.

= Directory based systems: states and
presence bits for cache lines.

= Distributed directory: physically distribute
directory with memory.

48

Dirty

Processor Processor Processor
2 = Z
: 4 —~ I g Al I g By
o & | Cache - & | Cache o &| Cache
) =) =) =
S S S
= = =
wn W wn

Memory

> Address/data

Figure 2.24 A simple snoopy bus based cache coherence system.

49

Processor Processor
Cache Cache
Processor
o 2
ez
S »
Memory 2 2
Cache 4 2 » v
— o, = —
c o o
- -
= =
L Q
Z Z
o) o
2 2
—— —
]]
L]
= o]
o o
=))
2 2
5 Processor 5
~— ~—
= =
L .
Cache
Presence
Bits Data
Processor
State Directory o 2
Cache 2 2
Memory | & @
;_J) ~—
£z
O
(a) (b)

Figure 2.25 Architecture of typical directory based systems: (a) a centralized directory; and (b) a
distributed directory.

