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iStandard RAM Model

s Standard Random Access Machine:

= Each operation
load, store, jump, add, etc ...

= takes one unit of time.
= Simple, generally one model.




iMuIti-processor Machines

= Numerous architectures
— different models.

= Difference in communication
= Synchronous
= Asynchronous

= Difference in memory layout

= NUMA
= UMA



iPRAM Model

= A PRAM consists of

= a global access memory (i.e. shared)

= a set of processors running the same
program (though not always), with a
private stack.

= A PRAM is synchronous.
= Unlimited resources.




iCIasses of PRAM

s How to resolve contention?
= EREW PRAM - exclusive read, exclusive write

= CREW PRAM - concurrent read, exclusive
write

= ERCW PRAM - exclusive read, concurrent
write

= CRCW PRAM - concurrent read, concurrent
write



iExampIe: Sequential Max

Function smax(A,n)

end

m .= -oo
fori:=1tondo

m := max{m,A[i]}
od
smax = m

Time O(n)




iExampIe: Sequential Max (bis)

Function smax2(A,n) Time O(n)
for i :=1ton/2 do
B[i] := max{A[2i-1] A[2i]}

od
if n= 2 then
smax?2 := B[1]
else
smax?2 := smax2(B,n/2)
fi

end



iExampIe: Parallel Max

Function smax2(A,n) [p1,p,,....p,/z] Time O(logn)

for i :=1+to n/2 pardo
p;: B[i] = max{A[2i-1],A[2i]}

od
if n= 2 then
p;: smax2 := B[1]
else
smax2 := smax2(B,n/2) [p1.ps,....pn 4]
fi

end



Analysis of the Parallel Max

= Time: O(logn) for n/2 processors.

s Work done?

= p(n)=n/2 number of processors.
= {(n)time to run the algorithm.

= W(n)=p(n)*t(n) work done.
Here w(n)=0(nlogn).
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iOptimaIity

Definition

If w(n)is of the same order as
the time for the best known
sequential algorithm, then the
parallel algorithm is said to be
optimal.
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iDesign Principle

Construct optimal algorithms
to run as fast as possible.

Construct optimal algorithms
using as many processors as
possible!
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iBrent’s Scheduling Principle

Theorem

If a parallel computation consists of
k phases

taking time #,715,.,1;
using a;,a,,...,a, processors
in phases 1,2,...,.k
then the computation can be done in time

O(a/p+1) using p processors where
t=sum(7), a=sum(at).
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Previous Example

= k phases = logn.

= [; = constant time.

s d,= n/2,n/4,...,1 processors.

= With p processors we can use time
O( logn+n/p).

= Choose p=0(n/logn) — time O('logn) and
this is optimal!
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iPrefix Computations

Input: array A[l..n] of numbers.
Output: array B[1..n] such that B[k] = sum(i:1..k) A[i]
Sequential algorithm:
function prefix*(A,n) Time O(n)
B[1] := A[1]
fori=2 to ndo
B[i] := B[i-1]+A[i]

od
end
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Parallel Prefix Computation

unction prefix*(A,n)[p;,....p,]
p: B[1]:= A[1]
if n>1 then
for i =1ton/2 pardo
p;: Cli]l:=A[2i-1]+A[2i]
od
D:=prefix*(C,n/2)[p;,....pn/]
for i =1ton/2 pardo
p: B[2i]:=DIi]
od
for i = 2 to n/2 pardo
p:: B[2i-1]:=D[i-1]+A[2i-1]
od
fi
prefix* =B
end



Prefix Computations

= [he point of this algorithm:

= It works because + is associative (i.e. the
compression works).

= It will work for any other associative
operations.

= Brent’s scheduling principle:

For any associative operator computable in O(1),
its prefix is computable in O(logn) using O(n/logn)
processors, which is optimall
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iMerging (of Sorted Arrays)

= Rank function:
= rank(x,A,n) = 0 if x < A[1]
= rank(x,A,n) = max{i | Ali] < x}
= Computable in time O( logn) by binary
search.

= Merge A[1..n] and B[1..m] into
C[1..n+m].

= Sequential algorithm in time O(n+m).
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iParaIIeI Merge

unction mergel(A,B,n,m)[p;,....0nm]

end

for i =1+to n pardo p;
TA[i]:= rank(A[i]-1,B,m)
CI+TALi]] = A[i)

od

for i =1to m pardo p;:
IB[i]:= rank(B[i],A,n)
C[i+IB[i]] = B[i]

od

mergel := C
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Simulating CRCW on EREW

= Assumption on addressed memory p(n)
for some constant c.
= Simulation algorithm idea:
= Sort accesses.
= Give priority to 1st,
= Broadcast result for contentious accesses.

= Conclusion: Optimality can be kept with
EREW-PRAM when simulating a CRCW
algorithm.
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Static vs. Dynamic Networks

Static network Indirect network

/ Switching element
Processing node

Network interface/switch



Bus Based Networks

Address %
( :
=
/ 3
\ Data _2:55
\ |
No local cache
Processor 0 Processor |
(a)
< Address é
5
=
b5
Data =
< J L J L %

Cache / Cache /

Local Memory Local Memory LO Ca l CGC h e

It it

Processor 0 Processor |

(b)
22



Processing Elements

Crossbar Networks

N

Memory Banks

A switching
element

______________
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iMuItistage Networks
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Figure 2.9 The schematic of a typical multistage interconnection network.
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iPerfect Shuffle Pattern

000

001

010

011

100

101

110

111

000 = left rotate(000)

001 = left rotate(100)

010 =left rotate(001)

011 =left rotate(101)

100 = lett_rotate(010)

101 = left rotate(110)

110 = lett rotate(011)

111 =left rotate(111)
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iSwitches in Omega Networks

X

Configurations: pass-through and cross-over.

p/2 * log p switching nodes:
log p stages, p/2 inputs & outputs.
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‘LOmega Network
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Figure 2.12 A complete omega network connecting eight inputs and eight outputs.
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‘LBIocking in Omega Networks
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Figure 2.13  An example of blocking in omega network: one of the messages (010 to 111 or 110
to 100) is blocked at link AB.



Processors <-> Processors
iNetworks

N
I

(a) (b)

Figure 2.14 (a) A completely-connected network of eight nodes; (b) a Star connected network of
nine nodes.

Performant, very expensive.  Bottleneck, cheaper.
14-02-2006 Alexandre David, MVP'06 29



Linear Arrays and Meshes
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Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.
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Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.



Hypercubes

O

0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube

4-D hypercube

Figure 2.17  Construction of hypercubes from hypercubes of lower dimension.
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iTree Based Networks
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Figure 2.18 Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree
network.

14-02-2006 Alexandre David, MVP'06
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‘LFat Trees
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Figure 2.19 A fat tree network of 16 processing nodes.

Alexandre David, MVP'06
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iEvaIuating The Networks

= All the previous topologies have
advantages and disadvantages.

= Important factors: cost and performance.

s Define criteria to characterize cost and
performance.
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Criteria

s Diameter: maximum distance p, <> p,.
= Connectivity.

= Bisection width.

= Bisection bandwidth.

= Cost.
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Figure 2.14
nine nodes.
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(a) A completely-connected network of eight nodes; (b) a Star connected network of

Alexandre David, MVP'06
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Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.
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Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.
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Figure 2.17  Construction of hypercubes from hypercubes of lower dimension.
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Figure 2.18 Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree
network.
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Criteria

= Diameter.

= Connectivity: measure of multiplicity of
paths.

s Bisection width.
s Bisection bandwidth.
s Cost.

40



Criteria

= Diameter.
= Connectivity.

= Bisection width: minimum number of links
to cut in order to partition the network in 2
equal halves.

s Bisection bandwidth: minimum volume of
communication allowed between 2 halves.

s Cost.
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Figure 2.20 Bisection width of a dynamic network is computed by examining various equi-
partitions of the processing nodes and selecting th umber of edges crossing the par-
tition. In this case, each partition yields an edge cut of four. Therefore, the bisection width of this

graph is four.
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Criteria

= Diameter.

= Connectivity.

= Bisection width.

= Bisection bandwidth.

= Cost: number of communication links, i.e.,
wires.
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iComparing The Topologies

Table 2.1 A summary of the characteristics of various static network topologies connecting p
nodes.

Bisection  Arc Cost
Network Diameter Width Connectivity  (No. of links)
Completely-connected I ? /4 p—1 p
Star 2 1 1 p—=
Complete binary tree 2log((p + 1)/2) 1 1 p—1
Linear array p—1 1 1 p—1
2-D mesh, no wraparound  2(,/p — 1) NS 2 2(p — /D)
2,/p

2-D wraparound mesh 21/02/2 ] ' 4 2p
Hypercube log p p/2 log p (plogp)/2
) 0

Wraparound k-ary d-cube  d|k/2] ) 2d
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iCache Coherence Protocols

= We need additional hardware to keep
multiple copies of the same memory
bank consistent with each other.

= We have seen that $$ is good but it
does not come for free.

s Mechanism known as cache coherence
protocol, usually described as state
machines.
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Figure 2.21 Cache coherence in multiprocessor systems: (a) Invalidate protocol; (b) Update pro-

tocol for shared variables.
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read write

C write

flush

Figure 2.22 State diagram of a simple three-state coherence protocol.
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Implementations of Cache
Coherence Protocols

= Different ways to implement the protocol
described by the state machine.

= Snoopy cache: good on busses.
Snoopy hardware that monitors states.

= Directory based systems: states and
presence bits for cache lines.

= Distributed directory: physically distribute
directory with memory.
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Figure 2.24 A simple snoopy bus based cache coherence system.
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Figure 2.25 Architecture of typical directory based systems: (a) a centralized directory; and (b) a
distributed directory.



