Parallel Programming

!'_ Platforms

Alexandre David

B2-206
http.//www.cs.aau.dk/~adavid/teaching/MTP-06/

Today

= Implicit Parallelism (2.1)

= Limitations of Memory System
Performance (2.2)

= Dichotomy of Parallel Computing Platforms
(2.3)

iMotivations

= Bottlenecks in computers:
= Processor
= Memory
=« Datapath

= Addressed with multiplicity.

= Parallelization not solution to everything
=« Sub-optimal serial code bad
= Optimize serial first (similar characteristics)

iTrends in Microprocessors

= Processor speed increase exponentially

s More and more transistors: How to use
them wisely?

= Multiple functional units run multiple
instructions in the same clock cycle:
superscalar processors.

s How to select and execute instructions?

Pipelining and Superscalar
iExecution

= Pipeline idea: overlap stages in
Instruction execution.

= Example of car factory.
= The good: higher throughput.

= The bad: penalty of branch miss
prediction.

= Multiple pipelines: several functional
units.

Pipelining and Superscalar
iExecution

Compiler Instruction cycles
c=a+b+c+d 0 , 4 6 o
dsS | | | | |
c=(a+b)+(c+d) = T15 ToF

CPU IF | ID |OF
1. load R1,@1000 oot e
2. load R2,@1008 IF | ID
3. addR1,@1004 IF | ID WB
4. addR2,@100C
5. add R1,R2 2x IF,ID, OF, .. in the same cycle:
6. store R1,@2000 superscalar.

Pipelining and Superscalar
iExecution

= Imagine another ordering (or
factorization by the compiler): different
performance.

= Resolve data dependency.

= Reordering by CPU possible (out-of-
order execution).

= Resource dependency.

Limitations

= Bottleneck: slowest stage -> small stages
to go fast -> long pipelines

=« BUT miss prediction gives big penalties
= How to keep busy the functional units?

L] | |
Vertical waste: IF | ID |OF
no instruction on IF | ID |OF | NA |
exgcuhon qnn‘. Here iE ig 8E E Horizontal waste:
no msTru;hon onh the s parts of execution
adder unit. = units used
IF | ID '

iAdder Utilization (fig 2.1)

IF

ID

OF

IF

ID

OF

Adder functional unit: execute =
2 units.

IF

ID

OF

m

IF

ID

OF

IF

ID

IF

m

ID

WB

|

vertical

T

horizontal

VLIWP

= Bundle instructions together to simplify the
superscalar scheduler.

= JA64 (Itanium) is an example.

= Problems:
= Rely a lot on the compiler.
= Limited parallelism (not dynamic).

10

Limitations of Memory System
iPerformance

= The memory system is most often the
bottleneck.

= Performance captured by
= latency and
=« bandwidth.

= Remark: In practice latency is
complicated to define: CL2, CL3, 2-2-2-
5,...

7-02-2006 Alexandre David, MVP'06 11

Effect on Performance:
iAn Example

= Processor @1GHz (1ns cycle), DRAM
with 100ns latency, capable of
executing 4 IPC.

s 4 IPC @1GHz -> 4GFLOPS peak rating.
= Processor must wait 100 cycles for

every request.

= Vector operations (dot product)
@10MFLOPs.

12

iImproving with Cache

= Note: Often “"$$" on pictures (cash).

= Hierarchical memory architecture with
several levels of cache (2 common).

= Instruction and data separate for L1.
= Low latency, high bandwidth, but small.
= Why does it improve???

13

iWhy is $$ good?

= Temporal locality

= Repeated access to the same data in a
small window of time.

= Spatial locality

=« Consecutive data accessed by successive
instructions.

= Vital assumptions, almost always hold.
= Very important for parallel computing.

14

iMatrix Multiplication Example

= Common example, will be used many times in
the course.

= C=A*B, where A (n*m), B (p*n), and C (p*m)
are matrices.

n
Cij = Zaikbkj
k=1

15

iMatrix Multiplication Example
1 .

B

N
N
N
N
N
N
N
A
N
N
N

Matrix Multiplication Example

7-02-2006

!

B

1 add & mul/k
n3 total
(n*n matrices).

— |

C

Alexandre David, MVP'06

17

iCache Characteristics

= Hit ratio (behavior): fraction of
references satisfied by the cache.

= Cache line (= bus width): granularity.

= Associativity (architecture): “collision
list” to reduce cache eviction.

= For the matrix: 2n? fetches from
memory to populate the cache, and
then n3 direct accesses at full speed.

18

Impact on Memory Bandwidth
(and Latency)

s Access to successive words much better
than random access.

= Higher bandwidth (whole cache line at once)

= Better latency (successive words already in
cache)

19

iExampIe: Strided Access

L kR ; kN Lo
mOO0O W OmO00 . miinH Hul § OO0 0:m W =0
BEOOO W . OmE00 = . oom0 = N ooom ‘m 0O
mEO00 W OmRO0 ‘H EEEH HEEN ooom W 0
OO0 W mH HupmEE | oomo m mEmEul []
A b A b A b A b
(a) Column major data access
—-u-uu- -0 o000 -0 O0OO00O0 -0 0000 =0
0000 — B OO0O00 O Oo0o00 []
OOooo OO0 o0Oo B i E 0000]
Oo0o0oo OO0o0o0 0000 —-u-uu- O
A b A b A b A b

(b) Row major data access.

Figure 2.2 Multiplying a matrix with a vector: (a) multiplying column-by-column, keeping a running
sum; (b) computing each element of the result as a dot product of a row of the matrix with the vector.

Other Approaches to Hide
Latency

= Prefetching

= but may evict useful data because cache is
small.

= Multi-threading

= but needs higher bandwidth because all the
threads share the same bus.

21

‘LMuIti-threading

1 thread/dot product B

BUT: need more bandwidth!

7-02-2006 Alexandre David, MVP'06 22

iSummary on Memory

= EXploit spatial and temporal locality in
programs. For sequential and parallel
programs!

= Operations/memory accesses is a good
indicator of tolerance to memory
bandwidth.

= Processing is cheap, memory is
expensive.

23

Dichotomy of Parallel
iComputing Platforms

= Logical organization: programmer’s view.
= Physical organization: actual hardware.

= [TWo critical components:

= expressing parallel tasks
(control structure)

= specifying interaction between them
(communication model).

24

Control Structure

= Parallelism can be expressed at different
levels of granularity

= from instruction level parallelism
= tOo processes.

= SIMD: single instruction stream, multiple
data stream.

= MIMD: multiple instruction stream ...

25

PE: Processing Element
L
_ PE a 5 \Lontrol umt / 5
— = =
o) A _— — A
e—ai e
o Z \control umt / Z
| A z
Global — - —
control % %
unit E) é
\ S N
a ™ o o
PE = & ontrol umt 7
~_ = \ N / =
e / + \%
o '\\control unit_/
(a) (b)

Figure 2.3 Atypical SIMD architecture (a) and a typical MIMD architecture (b).

Communication Model:
iShared Address Space

= Memory shared between several
Processors.

= NUMA different access time
= UMA same access time.
= Cases with local cache considered UMA.

= Easier programming, one address space
= but cache coherence mechanisms needed,
= But need to solve contention (writes).

27

‘LUMA vs. NUMA

NIOMIAN UOTI02UU02I2]1U]

= = =
kA1 1

o o o
> S p— >

NHOMIAN HONDI2UUODI2)U]

Ul e O Al U
= g p— =

NI0MIAN UONd2Uu0dIa)u]

(¢)

(b)

(a)

Communication Model:
iShared Address Space

read/write

Implemented as shared memory computers
or distributed memory computers.

Message-Passing Platforms

= Memory private to processors.

= Interaction via messages
= Send/receive primitives.
= MPI libraries.

= Hardware needed: good network
interconnect.

30

