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Today

= Implicit Parallelism (2.1)

= Limitations of Memory System
Performance (2.2)

= Dichotomy of Parallel Computing Platforms
(2.3)



iMotivations

= Bottlenecks in computers:
= Processor
= Memory
=« Datapath

= Addressed with multiplicity.

= Parallelization not solution to everything
=« Sub-optimal serial code bad
= Optimize serial first (similar characteristics)



iTrends in Microprocessors

= Processor speed increase exponentially

s More and more transistors: How to use
them wisely?

= Multiple functional units run multiple
instructions in the same clock cycle:
superscalar processors.

s How to select and execute instructions?



Pipelining and Superscalar
iExecution

= Pipeline idea: overlap stages in
Instruction execution.

= Example of car factory.
= The good: higher throughput.

= The bad: penalty of branch miss
prediction.

= Multiple pipelines: several functional
units.




Pipelining and Superscalar
iExecution

Compiler Instruction cycles
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Pipelining and Superscalar
iExecution

= Imagine another ordering (or
factorization by the compiler): different
performance.

= Resolve data dependency.

= Reordering by CPU possible (out-of-
order execution).

= Resource dependency.




Limitations

= Bottleneck: slowest stage -> small stages
to go fast -> long pipelines

=« BUT miss prediction gives big penalties
= How to keep busy the functional units?
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iAdder Utilization (fig 2.1)
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VLIWP

= Bundle instructions together to simplify the
superscalar scheduler.

= JA64 (Itanium) is an example.

= Problems:
= Rely a lot on the compiler.
= Limited parallelism (not dynamic).
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Limitations of Memory System
iPerformance

= The memory system is most often the
bottleneck.

= Performance captured by
= latency and
=« bandwidth.

= Remark: In practice latency is
complicated to define: CL2, CL3, 2-2-2-
5,...
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Effect on Performance:
iAn Example

= Processor @1GHz (1ns cycle), DRAM
with 100ns latency, capable of
executing 4 IPC.

s 4 IPC @1GHz -> 4GFLOPS peak rating.
= Processor must wait 100 cycles for

every request.

= Vector operations (dot product)
@10MFLOPs.
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iImproving with Cache

= Note: Often “"$$" on pictures (cash).

= Hierarchical memory architecture with
several levels of cache (2 common).

= Instruction and data separate for L1.
= Low latency, high bandwidth, but small.
= Why does it improve???
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iWhy is $$ good?

= Temporal locality

= Repeated access to the same data in a
small window of time.

= Spatial locality

=« Consecutive data accessed by successive
instructions.

= Vital assumptions, almost always hold.
= Very important for parallel computing.
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iMatrix Multiplication Example

= Common example, will be used many times in
the course.

= C=A*B, where A (n*m), B (p*n), and C (p*m)
are matrices.

n
Cij = Zaikbkj
k=1
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iMatrix Multiplication Example
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Matrix Multiplication Example
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iCache Characteristics

= Hit ratio (behavior): fraction of
references satisfied by the cache.

= Cache line (= bus width): granularity.

= Associativity (architecture): “collision
list” to reduce cache eviction.

= For the matrix: 2n? fetches from
memory to populate the cache, and
then n3 direct accesses at full speed.
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Impact on Memory Bandwidth
(and Latency)

s Access to successive words much better
than random access.

= Higher bandwidth (whole cache line at once)

= Better latency (successive words already in
cache)
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iExampIe: Strided Access
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(b) Row major data access.

Figure 2.2 Multiplying a matrix with a vector: (a) multiplying column-by-column, keeping a running
sum; (b) computing each element of the result as a dot product of a row of the matrix with the vector.



Other Approaches to Hide
Latency

= Prefetching

= but may evict useful data because cache is
small.

= Multi-threading

= but needs higher bandwidth because all the
threads share the same bus.
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‘LMuIti-threading

1 thread/dot product B

BUT: need more bandwidth!
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iSummary on Memory

= EXploit spatial and temporal locality in
programs. For sequential and parallel
programs!

= Operations/memory accesses is a good
indicator of tolerance to memory
bandwidth.

= Processing is cheap, memory is
expensive.
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Dichotomy of Parallel
iComputing Platforms

= Logical organization: programmer’s view.
= Physical organization: actual hardware.

= [TWo critical components:

= expressing parallel tasks
(control structure)

= specifying interaction between them
(communication model).
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Control Structure

= Parallelism can be expressed at different
levels of granularity

= from instruction level parallelism
= tOo processes.

= SIMD: single instruction stream, multiple
data stream.

= MIMD: multiple instruction stream ...
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PE: Processing Element
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Figure 2.3 Atypical SIMD architecture (a) and a typical MIMD architecture (b).



Communication Model:
iShared Address Space

= Memory shared between several
Processors.

= NUMA different access time
= UMA same access time.
= Cases with local cache considered UMA.

= Easier programming, one address space
= but cache coherence mechanisms needed,
= But need to solve contention (writes).
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‘LUMA vs. NUMA
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Communication Model:
iShared Address Space

read/write

Implemented as shared memory computers
or distributed memory computers.



Message-Passing Platforms

= Memory private to processors.

= Interaction via messages
= Send/receive primitives.
= MPI libraries.

= Hardware needed: good network
interconnect.
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