
 1

UML Statecharts

Emmanuel Fleury
B1-201

fleury@cs.aau.dk

 2

Outline
● Motivations
● State-Diagrams
● Finite State Machines
● Statecharts
● UML Statecharts
● Modelling Tools

 3

Motivations

 4

Motivations

A computer system can be seen
as a reactive system

Black Box
Input

1

Input
2

Input
3

Output
1

Output
2

Output
3

System to be modelled

 5

Our Goal ?

Represents
Computer Systems

in an “efficient” way !

 6

The Problem

● Global Understanding of the system
● Global Analysis of the system
● Flexibility/Adaptability of the system
● Modularity of the system
● Maintainability of the system

Computer systems are more and more
complex and this complexity prevent:

 7

Success Criteria

● Human Readable (a visual formalism)

● Concise
● Formal
● Abstract
● Just as expressive as needed

(important properties can be checked)

Good Properties to get:

 8

State-Diagrams

 9

Why States ?
Computer systems are naturally organized

in “states”. Where each state is an
abstraction for a position in the process

of achieving the task of the system.

Idle Processing

Wait

Input
1

Output
1ε

 10

State-Diagrams
● Labelled Directed Graphs

● Hypergraphs

● Hierarchical Graphs

● Higraphs

 11

Labelled Directed Graphs

● Q a finite set of states;
● A a (possibly infinite)

alphabet;
● T⊆QxAxQ a finite set of

transitions.

C

a

A

B
d

c

c

b

A Labelled Directed Graph
is a triplet (Q, A, T):

 12

Example

Idle
Received
message

Wait
SYN/ACK

get_message

send_ACKget_SYN/ACK

send_ACK

 13

Advantages/Drawbacks
● Good Points:

– Human readable
– Formal

● Bad Points:
– Not concise enough !!!

We need more abstraction !!!

 14

Hypergraphs

● Q a finite set of states;
● A a (possibly infinite)

alphabet;
● H⊆QxAxP(Q) a finite set

of hyper-edges.

An Hypergraph is a triplet (Q, A, H):

Try to factorize the number of edges
and generalize the notion of graphs !

Nice in theory but unusable in practice !

 15

Hierarchical Graphs

Notion of Hierarchy among the states

Allows Clustering, Refining and Zooming !

 16

Clustering

C

a
c

c

b

A

B
d C

a

b

A

B
d

c
D

Clustering

Using states hierarchy to
factorize behaviours

 17

Refining

C

a

b

A

B
d

c
D

C

a

b

c
D

Refining

Using state hierarchy to implement
“a posteriori” the

internal behaviour of a state

A

B

 18

Zooming In/Out

C

a

b

A

B
d

c
D

C

a

b

c
D

A

B

Zoom In

Using state hierarchy to
hide/unveil implementation's details

Zoom Out

 19

Formal Definition

● Q a finite set of states;
● E⊆QxQ a finite set of edges;

● >⊆QxQ the hierarchical relations in
between states.

A Hierarchical Graph
is a triplet (Q, E, >):

 20

But...

A lot of semantics problems !!!

 21

Higraphs

Introduced by David Harel in 1987
for Avionic Systems Modelling.

higraphs = graphs + depth + orthogonality

 22

Superstates
● A state which contain state(s)

● All of them have a default entry

● There are two types
of superstates:

– AND-States

– OR-States

 23

Default Entry
● One and only one for each superstate.
● Indicate the default initial state whenever

the superstate is entered.

 24

OR-States

At any given time, we are in
one and only one OR-State.

1 2 3

45

 25

AND-States

A C

D
B

E

F

● Parallel composition via split of a superstate
(dashed line)

● Each split is said to be an OR-state.
● No limitation in the number of OR-states.

 26

AND-States

A C

D
B

E

F

1

1 1

1

2

22

2

At any given time, we are in
every AND-States.

 27

AND-States

A C

D
B

A,D

B,D B,C

A,C⇔

Semantically equivalent to the cartesian product
of each automaton contained in one AND-state

Intend to reduce the number of states !

 28

Crossing Dashed Line Edges

Exit

Exit

Enter

Enter

⇔

What should happen here ????

 29

Multiple-Crossing Edges

● Each edge cross a superset border only once.
● Redundant edges are pruned.
● Intended to remove unnecessary complexity

of the model

 30

Symbolic Representation

B H

I

D

E

A

F

GC

A

B D EC

F G

H I

OR-State

AND-State

1 12

2

2 2

3 3 4

4

 31

Example

 32

And... Something's missing

Black Box
Input

1

Input
2

Input
3

Output
1

Output
2

Output
3

We still need to handle input/output messages !!!
And higraphs do not provide any mechanism for this...

 33

Finite State Machines

 34

Acceptors/Recognizers
- Finite Automata
- Büchi Automata
- ... etc ...

Automataaaabcccad YES
NO

The acceptor can decide if a
word is in his language or not

 35

Acceptors/Recognizers

s
0

s
1

s
2

P 









● Q a finite set of states;
● A a (possibly infinite) alphabet;
● T⊆QxAxQ a finite set of edges

● s
0
 is the initial state

● F⊆Q the set of accepting states

An acceptor is a 5-tuple (Q, A,T,s
0
,F):

The accepting condition change depending
on the kind of acceptor we consider.

 36

Finite Automata

s
0

s
1

s
2

P 








L={{},{},{},
{ ,},{ ,}}

● Q a finite set of states;
● A a (possibly infinite) alphabet;
● T⊆QxAxQ a finite set of edges

● s
0
 is the initial state

● F⊆Q the set of accepting states

A Finite automata is a 5-tuple (Q, A,T,s
0
,F):

The word should end in
one final state !

 37

Büchi Automata

s
0

s
1

s
2

P 








L={{ },{ , },{ , },
{ , , },{ , , }}



● Q a finite set of states;
● A a (possibly infinite) alphabet;
● T⊆QxAxQ a finite set of edges

● s
0
 is the initial state

● F⊆Q the set of accepting states

A Büchi automata is a 5-tuple (Q, A,T,s
0
,F):

The word should go infinitely
often in one final state

 38

Still not quite that...

We want more than a “YES” or “NO” answer.
We want to output another word.

Black Box
Input

1

Input
2

Input
3

Output
1

Output
2

Output
3

Automataaaabcc ccbaaa
Transducers

 39

Transducers
- Moore Machines
- Mealy Machines
- ... etc ...

Automataaaabcc ccbaaa

 40

Transducers

● Q a finite set of states;

● A
in
 a (possibly infinite) input alphabet;

● A
out

 a (possibly infinite) output alphabet;

● T⊆QxA
in
xQ a finite set of edges

● O Q⊆ xA
in
xA

out
 a set of outputs

● s
0
 is the initial state

A Transducer is a 6-tuple (Q, A
in
,A

out
,T,O,s

0
):

There are several ways to define
the output function.

 41

Moore Machines

s
0

s
1

s
2

P 








a

c

b
● Q a finite set of states;

● A
in
 a (possibly infinite) input alphabet;

● A
out

 a (possibly infinite) output alphabet;

● T⊆QxA
in
xQ a finite set of edges

● O⊆QxA
out

 a set of outputs

● s
0
 is the initial state

A Transducer is a 6-tuple (Q, A
in
,A

out
,T,O,s

0
):

The output depends in which state you are in

 42

Example (Moore Machine)

Input
Output

1 Output
2

Off On

click

click

click

Input String: click, click, click, ...
Output String: 0, 1, 1, 1, 0, ...

110

 43

Mealy Machines

s
0

s
1

s
2P /c

/a

/b

/c

/a

● Q a finite set of states;

● A
in
 a (possibly infinite) input alphabet;

● A
out

 a (possibly infinite) output alphabet;

● T⊆QxA
in
xQ a finite set of edges

● O⊆QxA
in
xA

out
 a set of outputs

● s
0
 is the initial state

A Transducer is a 6-tuple (Q, A
in
,A

out
,T,O,s

0
):

The output depends on which transition you are taking

 44

Example (Mealy Machine)

Input / Output

Off On

click / 1

click / 0

click / 1

Input String: click, click, click, ...
Output String: 1, 1, 1, 0, 1, 0, ...

 45

Statecharts

 46

Statecharts in a Nutshell
● What are the Statecharts ?

– Represent the behavioural view of the system.

– Visual formalism for describing states and
transitions in modular way.

● What is the purpose of using Statecharts ?
– To suppress and organize details.

– Best if graphical. The clarity they provide can
be lost if they are represented in tabular form.

 47

Advantages of Statecharts
● A hierarchical structure to reduce

complexity and support abstraction
● AND/OR superstates
● Concurrency & Orthogonality
● Compact & Expressive
● Global Communication Mechanism
● Formal enough to avoid ambiguity

(code generation is possible)

 48

Two Types of Models
2 Types of statechart development:

– Harel’s Statechart
● Developed by David Harel.
● First developed for function-oriented systems.
● Later extended for OO systems with few changes.

– UML Statechart
● Developed by Object Management Group (OMG).
● Extend the properties of Harel’s statecharts with

some new features.

 49

Harel's
Statecharts

 50

Harel's Statecharts

Harel's Statecharts =
state-diagrams + depth + orthogonality + broadcast

Harel's Statecharts is an higraph with
mealy machine's like communication and
extra macro-commands like:
● (Deep/Shallow) History
● Joins and Forks
● Conditional
● Selection
●Timeout

 51

Synchronization/Broadcast

A C

D

e

b/f

B

a/b g

E

F
f/h

i

Mealy machine's communication which allows:
● Synchronizations
● Broadcasts

 52

History Entries

2 Types of History Entries:
● Shallow History (H): Represents the most

recently entered state at the same level.
● Deep History (H*): Represents the most

recently visited state whatever how deep
is the state.

An History Entry give the most recently
visited state of the entered superstate

 53

Shallow History

A C

D

B

E

F

H

 54

Deep History

A C

D

B

E

F

H*

 55

Joins & Forks

a b
a a b

Take care of the guards !!!

Join Fork

 56

Condition & Selection

● Condition (C):
When entering the superstate, a condition
is checked and a sub-state is chosen.

● Selection (S):
When entering the superstate, a variable
is checked and a sub-state is chosen.

 57

Condition

A C

D

B

E

F

Ci>3

j=3

i=3

 58

Selection

A C

D

B

E

F

Svar=1

var=2

var=3

 59

Time-out

<2sec
timeout

But, time is not inherent in the model
So be careful !

Force to leave the (super)state
after the time-out has expired
through the timeout transition.

 60

But...

Still some semantics problems !!!

 61

Problems of Harel's Model
● Semantics:

Many papers published with flaws or ambiguities. None
giving the complete formal semantics

● Notion of Time:
Each transition is supposed to take no time which is an
unrealistic assumption in RT systems

● Determinism:
The model is easily made non-deterministic which is a
problem at code generation

● ... etc ...

 62

UML
Statecharts

 63

What is UML ?

UML = Unified Modelling Language

Introduced by the Object Management Group (OMG)
in 1997 as a standard modelling language for

object-oriented applications

UML defines a the syntax and the semantics of
a set of visual formalisms (diagrams) which gives

different perspectives of a software system

 64

UML 1.0
● Use Case Diagram: Interactions between the system and the users

● Class Diagram: Class hierarchy and data layout over the classes

● State Diagram: Behaviour of the system abstracted as a set of
states and transitions

● Communication Diagram: Object interactions

● Sequence Diagram: Time sequence of object interactions

● Component Diagram: High-level packaged structure of the code

● Deployment Diagram: Physical architecture and deployment of
components on the hardware architecture

 65

UML 2.0
● Structural
Modelling Diagrams
– Package Diagrams
– Class Diagrams
– Object Diagrams
– Composite Structure

Diagrams
– Component Diagrams
– Deployment Diagrams

● Behavioural
Modelling Diagrams
– Use Case Diagrams
– Activity Diagrams
– State Machine Diagrams
– Communication Diagrams
– Sequence Diagrams
– Timing Diagrams
– Interaction Overview

Diagrams

 66

UML Statecharts

● UML Statecharts inherits:
AND/OR-states, (Shallow/Deep) History, Fork/Join,
Condition, Time-out.

● UML Statecharts introduces:
Synch, Terminal, Junction, Stub.

Harel's Statecharts was introduced in UML
with modification of the semantics

and some additional elements

 67

New Properties
● Transitions are supposed to take an

“insignificant” amount of time... (sigh!)
● The model doesn't support overlapping

superstates (clearer semantics)
● Events can carry parameters and variables
● Introduce a “pseudo-states” class

(history, fork, join, condition, ...)

 68

Starting/Ending

Initial pseudo-state

Final pseudo-state

End of subtask

 69

Synchronization (Fork/Join)

Join Fork

Used to enter or exit AND-states

 70

Transitions
Trigger[Guard]/Effect

Off On

click[i<5]/1

click[i=0]/0

click[i>5]/1

 71

Decision (Branch/Merge)

Branch
[i<10] [i=10]

Merge
[i<10] [i=10]

Take care of the guards !!!

 72

Hiding Superstates
= Something is hidden

 73

Pseudo-states

Stub
Merge Junction

Choice Point
Junction

Initial/Default
Deep History

Shallow History

NameSymbol

H

H*

Join

Fork

Synch

Terminal

Conditional

NameSymbol

C OR

T OR

* OR n

 74

Problems of UML Model
● Semantics:

Many papers published with flaws or ambiguities. None
giving the complete formal semantics

● Notion of Time:
Each transition is supposed to take no time which is an
unrealistic assumption in RT systems

● Determinism:
The model is easily made non-deterministic which is a
problem at code generation

● ... etc ...
None of the problems have been solved !

 75

Modelling Tools

 76

VisualSTATE 5.1

 77

VisualSTATE Components
● 6 Components:

– Navigator: Project Manager

– Designer: Statecharts diagrams editor

– Verificator: Model Verifier

– Validator: Model Simulator and Tester

– Coder: Code Generator

– Documenter: Documentation Writer

 78

VisualSTATE Features
● From the original Statecharts

– Superstates

– Mealy transitions (I/O)

– Orthogonality

– Default Entry states

– (Deep) History states

● Added to the formalism
– Variables (VS_INT, VS_UINT, VS_FLOAT, ...)

– Signals (m, ^m)

– C functions on transitions

 79

VisualSTATE Transitions

Condition
Side

Action
Side

Ev(p),S
1
,[(x<7)||(y>10)]

[z=MAX],A
1
(x,y),S

4
,^SIG

Trigger
State

Condition
Guard

Expression

Assignment Function Force
State Signal

 80

Statemate 4.0
Statemate is development plate-form for object-oriented embedded
systems applications.

 * Enables complete systems design at the highest level
 * Eliminates ambiguities common in written specifications
 * Validates system behaviour early in the design process
 * Generates an executable specification of the system
 * Links designers, developers, and users for collaboration on a design,
 increasing the level of communication and cooperation
 * Simplifies understanding of operation with animation of graphical models
 during code execution
 * Accelerates the rapid prototyping process by providing C or Ada code
 for virtual and physical prototypes
 * Produces production quality code generation from the design model
 * Enables hardware/software co-specification
 * Automatically generates complete, consistent, and formal documentation

 81

Rhapsody 6.0

Rhapsody is an UML 2.0 based Model-Driven Development
environment for systems and software engineering. It allows
to specify systems and software design graphically, execute
and validate the system as building it, and ultimately produce
full production code from the model for the target system.

 * Environment for Systems and Software Development
 * Requirements Modelling
 * Design-level Debugging on Target
 * Directly Deployable C, C++, and Ada Code Generation
 * Automatic Test Vector Generation

 82

Questions ?

 83

Next Week
● Concurrent Programming Basic Principles

– Processes, Threads, Fibers
– Atomicity
– Synchronization
– Mutual Exclusion

● Processes
– Process Basics
– System Calls (exec, fork, sleep, wait, ...)

