Concurrency

5 - Monitors &
Condition Synchronization

Oor[j«O

Credits for the slides: Alexandre David

Claus Braband adavid@cs.aau.dk
Jeff Magee & Jeff Kramer

Concurrency: monitors & condition synchronization

©Magee/Kramer

Repetition - Interference (Ornamental Garden Problem)

People enter an ornamental garden through either of two
turnstiles. Management wishes to know how many are in
the garden at any time. (Nobody can exit).

Garden

Turnstiie ‘ Turnstile

Counter

Concurrency: monitors & condition synchronization ©Magee/Kramer

Repetition - Running the Applet

Go| !

After the East and West turnstile threads each have
incremented the counter 20 times, the garden people
counter is not the sum of the counts displayed.

Concurrency: monitors & condition synchronization ©Magee/Kramer

Repetition - Model Checking (reveals the error)

Ornamental Garden Model reveals the error:
ITESTGARDEN = (GARDEN || TEST).

« Use LTSA to perform an exhaustive search for ERROR

Trace to property violation in TEST:

go

east.arrive

east.value.read.O

west.arrive L TSA produces
the shortest

west.value.read.O
east.value.write.1
west.value.write.1
end
display.value.read.l
wrong

Concurrency: monitors & condition synchronization ©Magee/Kramer

path to reach
the ERROFstate.

Repetition - Interference and Mutual Exclusion

@ Interference (Java):

x=x+1; || x=x+1;

€ Mutual exclusion (Java):

synchronized

}

(obj) { synchronized (obj) {
X=X+ 1; ||

}

X=X+1;

€ Modelling mutual exclusion (FSP):

LOCK =(acq -> rel -> LOCK).

Concurrency: monitors & condition synchronization

acq

UNLOCKED LOCKED
rel

©Magee/Kramer

Monitors & Condition Synchronization

Concepts: monitors:
encapsulated data + access procedures
mutual exclusion + condition synchronization
single access procedure active in the monitor
nested monitors

Models: guarded actions

Practice: private data and synchronized methods (exclusion).
wait(), notify() and notifyAll() for condition synch.
single thread active in the monitor at a time

Concurrency: monitors & condition synchronization ©Magee/Kramer

5.1 Condition Synchronization (Car Park)

CarPark

Run | Pause | Run | Pause |

A controller is required to ensure:
e cars can only enter when not full

* cars can only leave when not empty (duhl)

Concurrency: monitors & condition synchronization ©Magee/Kramer

Car Park Model (Actions and Processes)

.p i

Pause Pause
¢ Actions of interest: ¢ Identify processes:
e arrive *Arrivals
env
*depart *Departures
*Control

Concurrency: monitors & condition synchronization ©Magee/Kramer

Car Park Model (Structure Diagram)

¢ Actions of interest: ¢ Identify processes:
e arrive *Arrivals }
env
*depart *Departures
*Control

ARRIVALS CARPARK DEPARTURES

() Y CONTROL

Concurrency: monitors & condition synchronization ©Magee/Kramer

Car Park Model (FSP)

ARRIVALS = (arrive -> ARRIVALYS).

DEPARTURES = (depart -> DEPARTURES).

CONTROL(N=4) = SPACESIN],

SPACESIi:0..N] =(when(i=0) arrive -> SPACES]i-1]
| when(i<N) depart -> SPACESJi+1]).

ICARPARK = (ARRIVALS || DEPARTURES || CONTROL(4)).

Guarded actions are used to control arrive and depart
LTS?

Concurrency: monitors & condition synchronization ©Magee/Kramer

Car Park Program

¢ Model
¢ - all entities are processes interacting via shared actions

¢ Program - need to identify threads and monitors:
¢ thread - active entity which initiates (output) actions
¢ monitor - passive entity which responds to (input) actions.

For the carpark?

* Arrivals: active => thread
» Departures: active => thread
 Control: passive => monitor

Concurrency: monitors & condition synchronization ©Magee/Kramer

Car Park Program (Interesting part of Class Diagram)

Runnable
0
r—-——~>="=—=—=—=—== L
| |
Active : Active
(thread) Arrivals Departures (thread)
carpark l lcarpar‘k
CarParkControl
arrive()
depart()

Passive (monitor)

Concurrency: monitors & condition synchronization ©Magee/Kramer

Car Park Program - Applet::start()

The Applet's start() method creates:
« CarParkControl monitor (with condition synchr.)
e Arrival thread
 Departures thread

public void start() {

CarParkControl ¢ = new DisplayCarPark(disp, PLACES);
arrivals.start(new Arrivals(c));
departures.start(new Departures(c));

The CarParkControl is shared by Arrival and Departures threads

Concurrency: monitors & condition synchronization ©Magee/Kramer

Car Park Program - Arrivals and Departures threads

class Arrivals Implements Runnable {
CarParkControl carpark;

Arrivals(CarParkControl c) { carpark =c; }

public void run() {

try { Similarly,
while (true){ Departures calls:
ThreadPanel.rotate(330);
carpark. arrive (); carpark. depart ()

ThreadPanel.rotate(30);

}
} catch (InterruptedException) {}

How do we implement the control of CarParkControl?

Concurrency: monitors & condition synchronization ©Magee/Kramer

Car Park Program - CarParkControl Monitor

class CarParkControl { Encaps‘u/clzﬁoﬂ
protected Int spaces, capacity; ~ protected
CarParkControl(int n){ Mutual e/l\/c/us'/bﬂ
capacity = spaces = n; ~ synchronized
} .
synchronized void arrive (){ 6'0/70’/7‘/0/7- S
 _spaces: ... synch/"onllzaf/on.
} Block if full?
synchronized void depart () { (spaces==0)
... ++spaces; ... —
| P Block if empty?
} (spaces==N)

Concurrency: monitors & condition synchronization ©Magee/Kramer

Condition Synchronization in Java

Java provides a thread wait queue per object
(not per class).

Object has methods:

public final void wait() throws InterruptedException;

Waits to be notified (i.e. another thread invokes notify).
Releases the synchronization lock associated with the obj.

When notified, the thread must reacquire the synchr. lock.

public final void notify();

public final void notifyAll();

Wakes up (nhotifies) a thread waiting on the object's queue.

Concurrency: monitors & condition synchronization ©Magee/Kramer

Condition Synchronization in Java (enter/exit)

A thread:

e Enters a monitor when a thread acquires the lock
associated with the monitor;

e Exits a monitor when it releases the lock.

Wait() causes the thread to exit the monitor,
permitting other threads to enter the monitor

I Thread A Thread B \

Monitor

wait()

Concurrency: monitors & condition synchronization ©Magee/Kramer

Condition Synchronization in FSP and Java

FSP: when (cond) action->NEWSTATE

synchronized void act() throws InterruptedException {
while (!cond) wait ();
/[modify monitor data
notifyAll 0;

The while loop is necessary to re-test the condition cond to ensure
that condis indeed satisfied when it re-enters the monitor.

notifyAll() is necessary to awaken other thread(s) that may be waiting
to enter the monitor now that the monitor data has been changed.

Concurrency: monitors & condition synchronization ©Magee/Kramer

CarParkControl

- Condition Synchronization

class CarParkControl {

protected Int spaces, capacity;

synchronized void arrive() throws Int'Exc’ {
while (spaces==0) wait ();
--spaces;
notify ();

}

synchronized void depart() throws Int'Exc’ {
while (spaces==capacity) wait ();
++spaces;
notity (); Why is it sensible to use notify()

} here rather than notifyAll() ?

Concurrency: monitors & condition synchronization

©Magee/Kramer

Models to Monitors - Guidelines
* Active entities (that initiate actions)
are implemented as threads.

* Passive entities (that respond to actions)
are implemented as monitors.

Each guarded action in the model of a monitor is
implemented as a synchronized method which uses a
while loop and wait() to implement the guard.

The while loop condition is the negation of the model
guard condition.

Changes in the state of the monitor are signaled to
waiting threads using notifyAll() (or notify()).

Concurrency: monitors & condition synchronization ©Magee/Kramer

5.2 Semaphores

Semaphores are widely used for dealing with
inter-process synchronization in operating systems.

Semaphore s: integer var that can take only non-neg. values.

s.down(): when s>0 do decrement(s); Aka. P’ ~ Passern

s.up(): increment(s); Aka. "V“ ~ Vrijgeven

Usually implemented as blocking wait:

s.down(): if (s>0) then decrement(s);
else block execution of calling process

s.up(): if (processes blocked on s) then awake one of them
else increment(s);

Concurrency: monitors & condition synchronization ©Magee/Kramer

Modelling Semaphores

To ensure analyzability, we only model semaphores that
take a finite range of values. If this range is exceeded
then we regard this as an ERROR. N is the initial value.

const Max =3
range Int = 0..Max

SEMAPHORBEO0) = SEMA[N,

SEMA[v:Int] =(up->SEMA[v+1]
lwhen (v>0) down->SEMA|v-1)),
SEMA[Max+1] = ERROR
LTS?

Concurrency: monitors & condition synchronization ©Magee/Kramer

Modelling Semaphores

up

up up
<:;2\\\\\\\\\\\\\\fifn down down
——
up

Action down is only accepted when value (v) of the
semaphore is greater than O.

Action up is not guarded.

Trace to a violation:
up = up => up =2 up

Concurrency: monitors & condition synchronization ©Magee/Kramer

Semaphore Demo - Model

Three processes p[1..3] use a shared semaphore mutex
to ensure mutually exclusive access (action critical) to
some resource.

LOOP = (mutex.down ->critical-> mutex.up ->LOOP).
||ISEMADEMO = (p[1..3]:LOOP
| {p[1..3]}: mutex :SEMAPHOREL)).

For mutual exclusion, the semaphore initial value is 1. Why?
Is the ERRORstate reachable for SEMADEM®

Is a binary semaphore sufficient (i.e. Max=1) ?

LTS?

Concurrency: monitors & condition synchronization ©Magee/Kramer

Semaphore Demo - Model

p.1l.mutex.down

p.2.mutex.down

p.3.mutex.down p.3.critical p.2.critical

p.1.critical

p.3.mutex.up

p.2.mutex.up

p.1l.mutex.up

Concurrency: monitors & condition synchronization

©Magee/Kramer

Semaphores in Java

Semaphores: passive objects => implemented as monitors.

public class Semaphore {
private int value;

public Semaphore (int n){ value =n; }

synchronized public void up() {

++value;
notify ();

}

synchronized public void down() throws Int'Exc’ {
while (value == 0) wait 0;
--value;

] In practice,

} semaphore is a low-level mechanism often used in
implementing higher-level monitor constructs.

Concurrency: monitors & condition synchronization ©Magee/Kramer

SEMADEMO display

Concurrency: monitors & condition synchronization

current
semaphore
value

thread 1is
executing
critical
actions.

thread 2 is
blocked
waiting.

thread 3is
executing
non-critical
actions.

©Magee/Kramer

SEMADEMO

What if we adjust the time that each thread spendsin its
?

¢ large resource requirementere conflict?
(eg. more than 67% of a rotation)?

¢ small resource requiremente conflict?

(eg. less than 33% of a rotation)?

Hence the time a thread spends in its critical
section should be kept as short as possible.

Concurrency: monitors & condition synchronization ©Magee/Kramer

SEMADEM®rogram - MutexLoop

class MutexLoop Iimplements Runnable {
Semaphore mutex ;

MutexLoop (Semaphore sema) {mutex=sema,}

Threads and
semaphore are
created by the

. . applet
publlctry V(Eld run() { sfzfrt()
method.
while (true) {
while (!ThreadPanel.rotate());
mutex . down(); /[acquire
while (ThreadPanel.rotate()); /I critical
mutex . up(); Il release
}
} catch (InterruptedException) {}
) J ThreadPanel.rotate() returns false while executing
non-critical actions (dark color) and true otherwise.

Concurrency: monitors & condition synchronization

©Magee/Kramer

5.3 Bounded Buffer

A bounded buffer consists of a fixed number of slots.

Items are put into the buffer by a producer process and
removed by a consumer process:

& Car Park Example!

Concurrency: monitors & condition synchronization ©Magee/Kramer

Bounded Buffer - a Data-Independent Model

PRODUCER) BUFFER CONSUMER
O ® e

The behaviour of BOUNDEDBUFFER is independent of
the actual data values, and so can be modelled in a data-
independent manner.

LTS? put put put put put
get get get get get

Concurrency: monitors & condition synchronization ©Magee/Kramer

Bounded Buffer - a Data-Independent Model

PRODUCER = (put->PRODUCER).

CONSUMER = (get->CONSUMER).

BUFFER(N=5) = COUNT]IO0],

COUNTIi:0..N] = (when (i<N) put->COUNTIi+1]
lwhen (i>0) get->COUNTIi-1]).

IBOUNDEDBUFFER =
(PRODUCER || BUFFER(5) || CONSUMER).

Concurrency: monitors & condition synchronization ©Magee/Kramer

Bounded Buffer Program - Buffer Monitor

We separate the

public Interface Buffer { Interface to
publicvoid put(Object o) throws InterruptedEXcC' nermit an
\ public Object get() throws InterruptedExc .
Implementation
class Bufferimpl implements Buffer { later.
protected Obiject[] buf;
protected int In, out, count, size;
é'ynchronized void put (Object 0) throws Int'Exc’ {
while (count==size) wait ();
buf[in] = o;
count++;
In = (in+l) % size;
notifyAll 0;
}
}

Concurrency: monitors & condition synchronization ©Magee/Kramer

Similarly for get()

synchronized Object get () throws Int'Exc’ {

1. while (count==0) wait ();
2. Object obj = buffout];
3. buflfout] = null;
4, count--;
5. out = (out+l) % size;
6. notifyAll 0;
7. return obj;
}
* What happens if we move notifyAll() up earlier (e.g. after line 1)?

e What is the point of line 3?

Concurrency: monitors & condition synchronization ©Magee/Kramer

Bounded Buffer Program - Producer Process

class Producer implements Runnable {
Buffer buf;
String alpha = "abcdefghijklmnopqrstuvwxyz";

Producer(Buffer b) { buf =b; }

public void run() { Similarly Consumer
try i{m . which calls buf.get()

while (true) {
ThreadPanel.rotate(12);
buf. put (new Character(alpha.charAt(i)));
i=(i+1) % alpha.length();
ThreadPanel.rotate(348);

}
} catch (InterruptedException) {}

Concurrency: monitors & condition synchronization ©Magee/Kramer

5.4 Nested Monitors

Suppose that, instead of using the count variable and
condition synchronization, we instead use 2 semaphores

full and empty to reflect the state of the buffer:

class SemaBuffer implements Buffer {
protected Object buff];

protected int In, out, count, size;
Semaphore full ; //counts number of items
Semaphore empty ; //counts number of spaces

SemaBuffer(int s){
size =s; In = out = count = 0;
buf = new Object[size];
full = new Semaphore(0);
empty = new Semaphore(size);

}

}

Concurrency: monitors & condition synchronization

©Magee/Kramer

Nested Monitors - Bounded Buffer Program

synchronized public void put(Object o) throws Int'Exc’ {

gumfﬁ%':do?wno; empty is decremented during a put,

count++; which is blocked if empty is zero.

in = (in+tl) % size;
\ full. up();

synchronized public Object get() throws Int'Exc’ {
full. down();

Object o0 = buffout]; full is decremented by a get,
buflout] = null; which is blocked if fullis zero.

count--;
out = (out+l) % size;

empty. up();
return o;

Does this behave as desired?

Concurrency: monitors & condition synchronization ©Magee/Kramer

Nested Monitors - Bounded Buffer Model

PRODUCER = (put -> PRODUCER).
CONSUMER = (get -> CONSUMER).
SEMAPHORE0) = SEMA[N],

SEMA[v:Int] = (up->SEMA|v+1]
lwhen (v>0) down->SEMA[v-1]).

BUFFER = (put -> empty.down ->full,.up -> BUFFER

|get -> full.down ->empty.up -> BUFFER).

IBOUNDEDBUFFER =
(PRODUCER || BUFFER || CONSUMER
|| empty:SEMAPHORE(5)
|| ful:SEMAPHORE(0)).

Does this behave as desired?

Concurrency: monitors & condition synchronization

©Magee/Kramer

Nested Monitors - Bounded Buffer Model

L TSA analysis predicts a possible DEADLOCK:

Composing
potential DEADLOCK
States Composed: 28 Transitions: 32 in 60ms
Trace to DEADLOCK:
get

The Consumer tries to get a character, but the buffer is
empty. It blocks and releases the lock on the semaphore
full . The Producer ftries to put a character into the

buffer, but also blocks. Why?

Concurrency: monitors & condition synchronization ©Magee/Kramer

Nested Monitors - Bounded Buffer Model

L TSA analysis predicts a possible DEADLOCK:

Composing
potential DEADLOCK
States Composed: 28 Transitions: 32 in 60ms
Trace to DEADLOCK:
get

1) Consumer calls SemaBuffer.get(), acquiring a lock on the buffer
synchronized public Object get()

2) Semaphore.down() acquires another lock on the Semaphore
synchronized public void down()

3) Semaphore.down() releases only its own lock using wait()

4) Producer calls SemaBuffer.put(), blocking on the buffer
synchronized public void put(Object)

This situation is known as the nested monitor problem.

Concurrency: monitors & condition synchronization ©Magee/Kramer

Nested Monitors - Revised Bounded Buffer Program

The only way to avoid it in Java is by careful design. In
this example, the deadlock can be removed by ensuring
that the monitor lock for the buffer is not acquired until
after semaphores are decremented.

public void put(Object 0) throws Int'Exc’ {
empty.down();
synchronized (this) {
buf[in] = o;
count++;
In = (intl) % size,
}
full.up();

}

Concurrency: monitors & condition synchronization ©Magee/Kramer

Nested Monitors - Revised Bounded Buffer Model

BUFFER = (put -> BUFFER
|get -> BUFFER).

PRODUCER = (empty.down -> put -> fullup -> PRODUCER).
CONSUMER = (full,down -> get -> empty.up -> CONSUMER).

The semaphore actions have been moved to the producer
and consumer. This is exactly as in the implementation
where the semaphore actions are outside the monitor .

Does this behave as desired?
Minimized L TS?

Concurrency: monitors & condition synchronization ©Magee/Kramer

5.5 Monitor invariants

An invariant for a monitor is an assertion concerning the
variables it encapsulates. This assertion must hold
whenever there is no thread executing inside the monitor
i.e. on thread entry to and exit from a monitor .

INV(CarParkControl): O < spaces< N
INV(Semaphore): O < value
INV(Buffer): O < count < size

and 0 < /mn< size
and O < out< size
and /n= (out+ count) %size

Like normal invariants, but must also hold when lock is released (wait)!

Concurrency: monitors & condition synchronization ©Magee/Kramer

Summary

Concepts: monitors:
encapsulated data + access procedures
mutual exclusion + condition synchronization
single access procedure active in the monitor
nested monitors

Models: guarded actions

Practice: private data and synchronized methods (exclusion).
wait(), notify() and notifyAll() for condition synch.
single thread active in the monitor at a time

Concurrency: monitors & condition synchronization ©Magee/Kramer

