
Assembly Languages

Alexandre David
1.2.05

adavid@cs.aau.dk

23-02-2011 DNA'11 - Aaborg University 2

High vs. Low Level Languages
One-to-many
translation.
Hardware
independence.
Application oriented.
General purpose.
Powerful abstractions.

One-to-one translation.

Hardware dependence.

System oriented (OS).
Special purpose.
Few abstractions, no
complex data-
structures.

23-02-2011 DNA'11 - Aaborg University 3

Assembly Languages
Low level – tight to processors.

One assembly language per processor (family).
The structure is always the same, the devil is in the
details.

Different from
Java, C, C++, etc…
These are defined once.

Sometimes several assembly languages for the
same processor.

Mentioned in the book: Intel & Bell Lab.
Exercise: Intel manuals & gnu tools.

23-02-2011 DNA'11 - Aaborg University 4

Interesting Patterns
Conditional execution

code that changes conditional flags
conditional jump
ex:
test $20, %%eax
je equal_20

cmp %%eax,%%ebx
ja greater

23-02-2011 DNA'11 - Aaborg University 5

Interesting Patterns
For-loops [for(init; invariant; next)]

similar with while-loops
ex:
Assume EAX contains the end.

xor %%ecx, %%ecx # for i = 0
cmp %%ecx, %%eax # if i ≥ n
jae end # then end

loop:
…
inc %%ecx # i++
cmp %%ecx, %%eax # if i < n
jb loop # then loop

end:

23-02-2011 DNA'11 - Aaborg University 6

Interesting Patterns
Functions:

(save stack base pointer
load registers)
execute
(save result - register or stack)
(restore stack)
ret

Function call:
load registers
call func_label

23-02-2011 DNA'11 - Aaborg University 7

Storing Constants
Simple data declarations with labels.

Size of the data only, no type.
Ex: .long, .word…

23-02-2011 DNA'11 - Aaborg University 8

Interaction With Assembly
Specific purposes (special hardware access).
Specific optimizations

simd/multimedia/special arithmetics…

Ex: asm or __asm__ directives.
Possible to write a .s file, assemble it, and
link the object file with the rest of the
program.

23-02-2011 DNA'11 - Aaborg University 9

Compiler vs. Assembler
A compiler transforms the original program
into assembly.

Freedom, optimizations.
Maintain semantics.

An Assembler makes a one-to-one
translation.

From mnemonics (opcode shortcut) to opcode
(binary representation).
Computes offsets for jumps.

