
DNA
Processor Types And

Instruction Sets

Alexandre David
1.2.05

adavid@cs.aau.dk

09+16-02-2011 DNA'11 - Aalborg University 2

Disclaimer
Not everything from chapter 5 really applies.
Replace
“the programmer”
by
“the compiler”.

09+16-02-2011 DNA'11 - Aalborg University 3

What Instructions Should A Processor
Offer?

Answer: It’s a tradeoff.
Minimum: +1, -1, branch if != 0 ??
Very large – cost and performance issues.
Factors:

size
use (often/rare)
power
domain specific (simd,rsa)

→ convenient for programmers, good for power
and cost.

09+16-02-2011 DNA'11 - Aalborg University 4

Representation Considerations
Set of instructions

which type? (arithmetic/memory access/floating)
how to code them
semantics of the instructions
definition of the set must be precise
See Intel’s manuals.

09+16-02-2011 DNA'11 - Aalborg University 5

Instructions
Generally (all processors), the parts are:

opcode
type of instruction – operation code (hexa)
operands
arguments of the instruction
result location
where to put the result
Example Intel’s manual.

opcode operand 1 operand 2 …

09+16-02-2011 DNA'11 - Aalborg University 6

Instruction Length
Variable

longer/shorter, variable # of operands
better memory usage

Fixed-length
same size for every instruction
(opcode+operands)
simpler hardware
faster hardware (?)
the point: not all instructions need to use all the
fields! (neg/not: 1 input, add/sub: 2 inputs)

09+16-02-2011 DNA'11 - Aalborg University 7

Registers
High speed storage device.

like local variables on chip
Limited size – tight to architecture.
Few of them – fast but expensive.
Basic operations: fetch & store.
Sometimes numbered from 0 to N-1.

x86 mess
Operands must be in registers most of the
time.

x86 mess

09+16-02-2011 DNA'11 - Aalborg University 8

Floating Point Registers
Separate set because purpose and type of
operations are different.

Operations on a different execution unit too!

Hold floating point number (single/double
precision).

x86 mess

Operands must be placed in registers.
x86 mess++.

09+16-02-2011 DNA'11 - Aalborg University 9

Single/Double Precision
Applies to floats & ints.
Double: twice as large as “usual”.

Usually floats are on 32 bits.
In fact they were already double precision
numbers on 16 bits processors.
64 bits floats are considered double precision
(double type).
x86 mess: internal 80 bits registers.

For ints: long int (32 or 64 bits) – also
emulation of long types.

Use pairs of registers (eax:edx).

09+16-02-2011 DNA'11 - Aalborg University 10

Example
Task: do Z = X + Y.
Steps (hypothetical instruction sets):

load r3, @X
load r4, @Y
add r3, r4
store @Z,r3
(assuming r3 and r4 are free
this is the job of the compiler).

09+16-02-2011 DNA'11 - Aalborg University 11

Terminology
Register spilling

Saving values in memory for later use.
When no more registers available.

Register allocation:
Choose what to keep when in registers.

Complex programs have many variables, constants
etc.. but few registers are available.
Compiler decides.
What to do when you run out of registers?
(There’s a stack BTW).

09+16-02-2011 DNA'11 - Aalborg University 12

Register Banks
Sometimes registers are partitioned into
banks.

Allows parallel access.
Restrict use.

What’s really relevant in fact: Groups of
registers.

General purpose.
Floating point.
Reserved for memory accesses.
Extensions – MMX/SSE

09+16-02-2011 DNA'11 - Aalborg University 13

Register Banks

09+16-02-2011 DNA'11 - Aalborg University 14

Types of Instruction Sets
CISC (complex instruction set computer)

many instructions
variable time

RISC (reduced instruction set computer)
few instructions
single clock cycle
no floating point instructions
MIPS

In fact we should revise that.

09+16-02-2011 DNA'11 - Aalborg University 15

CISC/RISC - Revised
CISC

complex set, variable size
x86

RISC
reduced set, fixed-size
not necessarily on cycle/instruction
support for floats
PPC

The religious question of CISC vs. RISC is
irrelevant now because all processors are
RISC anyway.

09+16-02-2011 DNA'11 - Aalborg University 16

Pipelining and Superscalar
Execution – Recall (MVP)

1. load R1,@1000
2. load R2,@1008
3. addR1,@1004
4. addR2,@100C
5. add R1,R2
6. store R1,@2000

c=a+b+c+d
as
c=(a+b)+(c+d)

Compiler

CPU

Instruction cycles

0 2 4 6 8

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

2x IF, ID, OF, … in the same cycle:
superscalar.

09+16-02-2011 DNA'11 - Aalborg University 17

Pipelines
Superscalar: if several execution units of the same
type are present.

Exec 2 add at the same time.

Depth of the pipeline: # of steps.
Pentium 4 – deep pipeline (20 states)
Pentium M – shorter (~15)
Interferes with branch prediction.
Interferes with out-of-order execution.
Amount of work @ each step influences maximum
frequency.

Used in all modern CPUs – RISC/CISC blurred.

09+16-02-2011 DNA'11 - Aalborg University 18

(M
is

us
e

of
 f

ig
ur

e)
.

09+16-02-2011 DNA'11 - Aalborg University 19

Basic Steps In Execution
Fetch and execute cycle.

Fetch next instruction.
(Opcode tells # of operands.)
Fetch each operand.
Execute operation.
Store result.
Repeat.

How to start?

09+16-02-2011 DNA'11 - Aalborg University 20

How to Optimize?
Ask Intel/AMD.
Multiple dedicated units.
Use the units in parallel.
Out-of-order execution (deduce
dependencies & reorder).
Pipeline.
Branch prediction.

Duplicate execution.
Speculative execution.
VLIW (Itanium’s very large instruction word)

09+16-02-2011 DNA'11 - Aalborg University 21

Pipeline cont.
Use is automatic

it stalls automatically
dependencies not met
need operands from memory
need operands from other operations
call/jump/branch
wait for I/O or co-processor

effect of stalls: waste cycles
“bubble” passing through a pipeline

idea of hyper-threading: 2 execution threads
share the same pipeline & units to fully use them.

09+16-02-2011 DNA'11 - Aalborg University 22

Optimizing Programs
Compiler’s job.
Pipeline friendly.

Move instructions around to reduce stalls.
Reduce branches.
Note: some special instructions
(conditional moves).
Use forwarding – avoid store and use result for
next instruction.

09+16-02-2011 DNA'11 - Aalborg University 23

Example

09+16-02-2011 DNA'11 - Aalborg University 24

No-Op Instructions
Book is wrong here.
Have an effect on program counter.
Have no effect on

registers
condition registers (flags)

Used by compilers to align code.
Different types/sizes.

09+16-02-2011 DNA'11 - Aalborg University 25

Types of Instructions - Units
Arithmetic operations – ALU
Logical operations – ALU
Data access, transfers – MMU
Jumps (conditional or not) – Main control unit
(special)
Floating point instructions – FPU
Processor control instructions – special, e.g.,
cpuid.

09+16-02-2011 DNA'11 - Aalborg University 26

Some Special Registers
Program counter – instruction pointer register

@ of next instruction to execute

Stack registers – work together with
push/pop instructions.

Programs have a statically allocated stack.

Condition registers – condition code.
ZF, CF, PF, OF…

Extensions (SSE – xmm*/MMX –
mm*/Altivec…)

09+16-02-2011 DNA'11 - Aalborg University 27

Branches
Absolute jumps – rarely used.

Interrupts – bios.
Relative jumps

not conditional
conditional – after an instruction that changes the
condition register.

test/cmp/add/sub…

Calls – a branch in a sense
before a call: load arguments
push IP on the stack – jump
return: pop IP from the stack
after a call: use results
before/after: use registers or the stack (check 32/64 bits)

09+16-02-2011 DNA'11 - Aalborg University 28

Condition Jump Example

Note: condition moves also available on x86.

09+16-02-2011 DNA'11 - Aalborg University 29

Register Window
Hardware optimization for argument passing.
Show only a subset of the real internal
registers – at a time.

Slide the window upon calls.
Arguments can be loaded into these special
registers.
Slide → keep arguments visible + expose new
registers for future calls.

09+16-02-2011 DNA'11 - Aalborg University 30

Register Window

09+16-02-2011 DNA'11 - Aalborg University 31

Example – MIPS 1

09+16-02-2011 DNA'11 - Aalborg University 32

Example – MIPS 2

09+16-02-2011 DNA'11 - Aalborg University 33

MIPS 3 – (RISC with FP)

09+16-02-2011 DNA'11 - Aalborg University 34

Comments
No “mov reg, reg” ?

Use add r1,r2,r3 with a special register for 0.

Minimum set of instruction.
Orthogonality.

No overlap/duplication.

But also several instructions for some
operations.

