DNA Introduction to Processors

Alexandre David 1.2.05 adavid@cs.aau.dk

First Computers & Processors

Busicom 141-PF printing calculator, Intel 4004 1st microprocessor

IBM PC 1981 4.77MHz, Intel 8088 16 bits, 16kB RAM

Commodore 64 1982 1MHz, 8 bits, 64kB RAM

Apple Macintosh 1984 8MHz, Motorola 68000 32 bits, 128kB RAM

Von Neumann Architecture

- Fundamental concept *stored program*.
 - (John Von Neumann mathematician)
 - The model fits most modern processors.
- Basic components:
 - processor
 - memory
 - I/O

790FX

Processors

- Perform computations involving multiple steps. Always doing something.
- Variety of capabilities
 - logical/arithmetic operations, int, float, double, mmx, cryptography...
- Types:
 - fixed logic single operations
 - selectable logic selectable operations
 - parameterized logic control operations via parameters
 - programmable logic program to run

FPGA

- Special processors.
- Field Programmable Gate Array
 - programmable gates
 - "morph" the logic to be anything, on-the-fly
 - can be a processor A, change to be processor B, can execute programs, can do anything.

Structure of Processors

- Hierarchical approach
 - "computational engines" computational units

Major Components Concepts

- Controller
 - control execution order
- Computational units
 - ALU, FPU, (MMU)
- Local data storage
 - registers, cache
- Internal interconnections
 - data paths, buses
- External interfaces
 - (memory controller), I/O

Computational Units

- ALU
 - arithmetic (int add, sub, div, mul)
 - shifts (left, right, circular)
 - Iogic (and, or, xor, not)
- FPU
 - arithmetics ... + complex functions
 - MMX, SSE
- MMU
 - Ioad/store out-of-order
- Decoders

Processor Categories

- Coprocessors accelerate some operations
 - SPUs inside Cell
- Microcontrollers
 - control physical systems no real computations
- Microsequencers
 - control coprocessors & other units
- Embedded system processors
 - specialized CPUs mobiles, mp3 players...
- General purpose processors
- System-on-chip

FPGA

Microprocessor Market Shares

Microprocessor Market Shares Reality

System-on-chip

09-02-2011

CW4512

Array of gates. Configure the interconnect.

Stored Program

- Concept: programmable device if it is possible to change the program *independently* from the processor.
- Program stored in ROM/RAM.
 - How does a computer start? Bootstrap.
- Fetch-and-execute cycle: basis.
 - Move through program automatically.
 - repeat forerever {
 fetch next instruction
 execute

Fetch-and-Execute

- When do you stop?
 - You don't unless you shutdown the system.
 - OSs → execute infinite loop to schedule processes.
 - Embedded systems → infinite loop to probe inputs.
 - Sometimes possible to "pause" standby.

Clock & Instruction Rate

- Clock rate:
 - clock for the gates of the processor
 - hint on speed
- Instruction rate:
 - IPC how much work per cycle
 - depends on instructions & processors
 - Inked to pipeline
- Which kind of instructions are available?
- How to execute them?