DNA Data and Program Representation

Alexandre David 1.2.05 adavid@cs.aau.dk

Introduction

- Very important to understand how data is represented.
 - operations
 - limits
 - precision
- Digital logic built on 2-valued logic system
 - high/low 5V/0V true/false
 - we abstract from that from now on \rightarrow bits 0/1

Natural/Real Numbers

- Base 10
- Infinite
- Exact

Computer Numbers

- Base 2
- Finite
- Rounding overflow

In this lecture

- How to represent numbers & characters range, encoding.
- A little arithmetic.
- How to use these numbers.

Questions

- How to code negative numbers?
- How to code real numbers?
- Which kind of precision do we get?
 - Small numbers vs. big numbers.
- What about characters?

 Overflow: main() { printf("%d\n",200*300*400*500); } outputs -88490188.
 Fix - sort of:

main() { printf(``%||d\n",200LL*300LL*400LL*500LL); }

```
outputs 1200000000.
```

What if I forget LL?

Example

- Loss of precision: (3.14+1e20)-1e20==0.0
 3.14+(1e20-1e20)==3.14
- Test x == 0.0 not very useful when solving equations.
- In this lecture you will know why.

Basic unit is the byte (= 8 bits).

C-declaration	Typical 32-bit	Typical 64-bit
char	1	1
short int	2	2
int	4	4
long int	4	8
char *	4	8
float	4	4
double	8	8

"Features"

- Limits on addressable memory.
- Size linked to architecture 32/64.
- Aligned memory allocation (32/64 bits).

```
    Careful on addressing:
main() {
char a[]="Hello world!";
int *p=&a[1];
printf("%d\n",*p); Bus error on some CPUs
}
```

Integer Encoding

Unsigned integers:

$$UB = \sum_{i=0}^{w-1} x_i 2^i$$

 Signed integers: Called 2 complement.

$$SB = -x_{w-1} 2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

w: size of a word (in bits)x: bits (0 or 1)

Highest bit codes the sign.

Range & Examples

Examples: 1010 = 10, 0110 = 6, 0101 = 5

Range:

- unsigned 2^k numbers from 0 to 2^k-1
- signed 2^k numbers from -2^{k-1} to 2^{k-1}-1
 - one more negative number than positive ones
- How to convert between types?
 - int char long int…
 - sign extension

Basic Arithmetic

- Logical operations (bitwise):
 &,|,^,~,<<,>>.
 Example: a ^= b; b ^= a; a ^= b;
- Arithmetic operations: + * /.
- Careful with shifts on signed integers!
 - arithmetic & logical shifts
- Do not mess up with boolean operators (&&, ||).

Properties

- Most operators are the same on signed/unsigned integers – from a binary point of view – beauty of the encoding.
 - One hardware implementation for + - / * ...

valid for signed and unsigned integers.

 Example on 4 bits: 1 + 1001 = 1010 unsigned: 1+9 = 10 signed: 1+(-7) = -6

Properties

- Operations based on the algebra <Z_n,+_n,*_n,-_n,0,1> (commutativity, associativity, distributivity,...)
 Operations modulo n and -a=0 or -a=n-a.
- Similar to boolean algebra <{0,1},|,&,~,0,1> with the addition of DeMorgan laws ~(a&b)=~a|~b, ~(a|b)=~a&~b

Practice: Shifts & Masks

- Read bit n: Use mask (1 << n).</p>
- Set bit n on int bits[]: ipos = n / 32; imask = 1 << (n % 32); bits[ipos] |= imask;
- Division/multiplications by powers of 2 seen as shifts.
- 2-complement: $-a = \sim (a-1) = \sim a+1$

Arithmetic

- Machine code of + * / same for int/uint.
- Integer convertion == type casting.
 - Padding for the sign (int).
 - Conversion is modulo the size of the new int.
 - Beware of implicit conversions in C!
- Optimizations for some operations:

a%2^i == a & ((1<<i)-1) 2^i == 1<<i

Beware of precedence of operators:

- if (x & mask == value) WRONG
- if ((x & mask) == value) RIGHT
- Test odd numbers: if (x & 1)
- Careful:

for(i = 0; i < n-1; ++i) ...

1011 +1101	1011 *1101	multiplicand multiplier
111	1011	
11000	0000	partial
	1011	products
	1011	
Subtraction?	10001111	product

Hexadecimal Notation

- Learn the first powers of 2.
- Hexadecimal more useful:
 - One digit codes 4 bits. 0...F=0...15=16 numbers.
 - Notation: 0x...
 - Why?
- Examples:

• 0xa57e=1010 0101 0111 1110 10=8+2,5=4+1,7=4+2+1,14=8+4+2

• 0xf = 1111, 0x7=0111, 0x3=0011

Endianness: Beware!

- "0xa57e" is a notation for humans.
 Corresponds to "1010 0101 0111 1110" in base 2.
 - Little endian: stored as 0111111010100101.
 - Big endian: stored as 1010010101111110.
- Does not matter in C/Java/C#, except for
 - bitmap manipulation
 - device drivers
 - network transfers

Testing for Endianness

Write a value on 32 bits.

- Read 8/16 bits and check what was written.
- Exercise for Sun/Intel.

```
main() {
    int a = 0xf0000000;
    char *c = &a;
    printf(``%x\n", *c);
}
```

- Intel? $\rightarrow 0$
- Sun? \rightarrow 0xfffffff0
- What if a = 0x7000000?

Representation of Reals

- How to code a real number with bits?
 - Finite precision \rightarrow approximation.
 - Represent very small and very large numbers \rightarrow density of encoding varies.
- Scientific notation used, e.g. (base 10), 3.141e2 – but in base 2.
- Starter: fractional numbers bad for large or small numbers.
 - Decimal (d): Binary(b): $d = \sum_{i=-n}^{m} 10^{i} d_{i}$ $b = \sum_{i=-n}^{m} 2^{i} b_{i}$

DNA'11 - Aalborg University

IEEE Floats

- IEEE 754 floating point standard
- S E M

- V=(-1)^SM*2^E
- Number of bits (float/double): s[1], m[23/52], e[8/11].
- Normalized and de-normalized values.
- Bit fields: s, m, e to code respectively S, M, E.
- Normalized values (e≠0, e≠111...)
 - E=e-bias (-126...127/-1022...1023).
 - M=1+m (1≤M<2)
 - Trick for more precision: implied leading 1.

- De-normalized values (e= 0 or 11...)
 - e=0: E=1-bias, bias=2^{k-1}-1
 - Coding compensates for M not having an implied leading 1.
 - M=m
 - For numbers very close to 0.
 - e=11...:
 - m=0, (signed infinite)
 - m!=0, NaN.

Ranges of Floats

- Single precision (float) 2⁻¹²⁶...2¹²⁷ ~ 10⁻³⁸...10³⁸.
- Double precision (double) $2^{-1022}...2^{1023} \sim 10^{-308}...10^{308}$.

"Features" of IEEE floats

- +0.0 == 0 (binary representation = 00...).
- If interpreted as unsigned int, floats can be sorted (+x ascending, -x descending).
- All int values representable by doubles.
- Not all int values representable by floats.
 - round to even (avoid stat. bias)
 - round towards 0
 - round up
 - round down
 - can't choose in C...

Properties (floats)

- Operations NOT associative.
- Not always inverse (infinity).
- Loss of precision.
- Ex: x=a+b+c; y=b+c+d; Optimize or not?

- Monotonicity $a \ge b \Rightarrow a + x \ge b + x$
- Casts:
 - int2float rounded, double2float rounded/overflow
 - int2double, float2double OK
 - float2int, double2int truncated/rounded/overflow.

IA32: The Good And The Bad

- Good: Uses internally 80 bits extended registers for more precision.
- Bad:
 - Stack based.
 - Side effects like changing values when loading or saving numbers in memory whereas register transfers are exact.
- Extensions: MMX, SSE, (Altivec). SIMD instructions = operations working in parallel on multiple data.

Numerical Precision

- Evaluation of precision
 - absolute $x \pm \alpha$
 - relative $x^*(1 \pm \alpha)$
- Be careful with division by very small values: Can amplify numerical errors.
 - Numerical justification for Gauss' method to solve linear equations.

Character Sets

- By convention (standard), we assign codes to characters.
 - Careful with programming languages
 C char = 1 byte, Java char = 2 bytes
 - ASCII (American Standard Code for Information Interchange) common (7 bits), extended ASCII (8 bits).
 - Unicode
 - Other IEEE8859-x codings.
 - Other Japanese codings...

More Complex Structures

- How to represent, e.g., struct { int a, b; char c}?
- Use continuous bits for the successive fields.
 - Compilers will *align* data!
 - Try:
 typedef struct { int a; char c; } foo_t;
 int main()
 {
 printf(``%d\n", sizeof(foo_t));
 return 0;
 }

What About Programs?

- Instructions coded into bytes.
 - "opcode"
 - Processors interpret them as their particular instruction sets (standard).