DNA

Data and Program Representation

Alexandre David 1.2.05 adavid@cs.aau.dk

Introduction

- Very important to understand how data is represented.
- operations
- limits
- precision
- Digital logic built on 2-valued logic system
- high/low 5V/0V true/false
- we abstract from that from now on
\rightarrow bits 0/1

Basics

Natural/Real Numbers

- Base 10
- Infinite
- Exact

Computer Numbers

- Base 2
- Finite
- Rounding - overflow

In this lecture

- How to represent numbers \& characters - range, encoding.
- A little arithmetic.
- How to use these numbers.

Questions

- How to code negative numbers?
- How to code real numbers?
- Which kind of precision do we get?
- Small numbers vs. big numbers.
- What about characters?

Example

- Overflow: main() \{ printf("\%d\n",200*300*400*500); \} outputs -88490188.
- Fix - sort of:
main() \{
printf("\%lld\n",200LL*300LL*400LL*500LL); \} outputs 12000000000 . What if I forget LL?

Example

- Loss of precision:
$(3.14+1 \mathrm{e} 20)-1 \mathrm{e} 20==0.0$
$3.14+(1 e 20-1 e 20)==3.14$
- Test $x==0.0$ not very useful when solving equations.
- In this lecture you will know why.

Data Storage

- Basic unit is the byte (= 8 bits).

C-declaration	Typical 32-bit	Typical 64-bit
char	1	1
short int	2	2
int	4	4
long int	4	8
char $*$	4	8
float	4	4
double	8	8

"Features"

- Limits on addressable memory.
- Size linked to architecture - 32/64.
- Aligned memory allocation (32/64 bits).
- Careful on addressing: main() \{
char a[]="Hello world!";
int *p=\&a[1];
printf("\%d $\backslash n$ ", *p); Bus error on some CPUs \}

Integer Encoding

- Unsigned integers:

$$
U B=\sum_{i=0}^{w-1} x_{i} 2^{i}
$$

- Signed integers:

Called 2 complement.

$$
S B=-x_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} x_{i} 2^{i}
$$

w: size of a word (in bits)
x : bits (0 or 1)

- Highest bit codes the sign.

Range \& Examples

- Examples: $1010=10,0110=6,0101=5$

$$
\begin{array}{|l|l|l|l|}
\hline 2^{3}=8 & 2^{2}=4 & 2^{1}=2 \mid 2^{0}=1 \\
\hline
\end{array}
$$

- Range:
- unsigned 2^{k} numbers from 0 to $2^{\mathrm{k}-1}$
- signed 2^{k} numbers from -2^{k-1} to $2^{k-1}-1$
- one more negative number than positive ones
- How to convert between types?
- int - char - long int...
- sign extension

Basic Arithmetic

- Logical operations (bitwise):
\& $1, \wedge, \sim, \ll, \gg$.
Example: $a^{\wedge}=b ; b^{\wedge}=a ; a^{\wedge}=b$;
- Arithmetic operations: + - * /.
- Careful with shifts on signed integers!
- arithmetic \& logical shifts
- Do not mess up with boolean operators (\&\&, ||).

Properties

- Most operators are the same on signed/unsigned integers - from a binary point of view - beauty of the encoding.
- One hardware implementation for
$+-/ * \ldots$
valid for signed and unsigned integers.
- Example on 4 bits:

$$
1+1001=1010
$$

unsigned: $1+9=10$
signed: $1+(-7)=-6$

Properties

- Operations based on the algebra $<Z_{n},+_{n} *_{n},{ }_{n}, 0,1>$ (commutativity, associativity, distributivity,...)
Operations modulo n and $-\mathrm{a}=0$ or $-\mathrm{a}=\mathrm{n}-\mathrm{a}$.
- Similar to boolean algebra < 20,1$\}, \mid, \&, \sim, 0,1>$ with the addition of DeMorgan laws

$$
\sim(a \& b)=\sim a \mid \sim b, \sim(a \mid b)=\sim a \& \sim b
$$

Practice: Shifts \& Masks

- Read bit n : Use mask $(1 \ll \mathrm{n})$.
- Set bit n on int bits[]: ipos = n / 32; imask = 1 << (n \% 32); bits[ipos] |= imask;
- Division/multiplications by powers of 2 seen as shifts.
- 2-complement: $-\mathrm{a}=\sim(\mathrm{a}-1)=\sim a+1$

Arithmetic

- Machine code of + - * / same for int/uint.
- Integer convertion == type casting.
- Padding for the sign (int).
- Conversion is modulo the size of the new int.
- Beware of implicit conversions in C!
- Optimizations for some operations:

$$
\begin{array}{llll}
2^{*} a & =a+a==a \ll 1 & a / 2= & a \gg 1 \\
a^{*} 2^{\wedge} i=x & x \ll i & a / 2^{\wedge}==a \gg i \\
a \% 2^{\wedge} i==a \&((1 \ll i)-1) & 2^{\wedge} i==1 \ll i
\end{array}
$$

Notes

- Beware of precedence of operators:
- if (x \& mask == value) WRONG
- if ((x \& mask) == value) RIGHT
- Test odd numbers: if (x \& 1)
- Careful: unsigned int i;
for $(i=0 ; i<n-1 ;++i) . .$.

Overflow - "carry"

Subtraction?

1011	multiplicand
$* 1101$	multiplier
1011	
0000	partial
1011	products
$\frac{1011}{10001111}$	product

Hexadecimal Notation

- Learn the first powers of 2.
- Hexadecimal more useful:
- One digit codes 4 bits. $0 . . \mathrm{F}=0 . . .15=16$ numbers.
- Notation: 0x...
- Why?
- Examples:
- 0xa57e=1010 010101111110

$$
10=8+2,5=4+1,7=4+2+1,14=8+4+2
$$

- $0 x f=1111,0 \times 7=0111,0 \times 3=0011$

Endianness: Beware!

. "0xa57e" is a notation for humans. Corresponds to "1010 01010111 1110" in base 2.

- Little endian: stored as 0111111010100101.
- Big endian: stored as 1010010101111110.
- Does not matter in C/Java/C\#, except for
- bitmap manipulation
- device drivers
- network transfers

Testing for Endianness

- Write a value on 32 bits.
- Read 8/16 bits and check what was written.
- Exercise for Sun/Intel.

```
main() {
    int a = 0xf0000000;
    char *c = &a;
    printf("%x\n", *c);
}
```

- Intel? $\rightarrow 0$
- Sun? \rightarrow 0xfffffffo
- What if $\mathrm{a}=0 \times 70000000$?

Representation of Reals

- How to code a real number with bits?
- Finite precision \rightarrow approximation.
- Represent very small and very large numbers \rightarrow density of encoding varies.
- Scientific notation used, e.g. (base 10), $3.141 e 2$ - but in base 2 .
- Starter: fractional numbers - bad for large or small numbers.
- Decimal (d):
- Binary(b):

$$
d=\sum_{i=-n}^{m} 10^{i} d_{i} \quad b=\sum_{i=-n}^{m} 2^{i} b_{i}
$$

IEEE Floats

- IEEE 754 floating point standard

S	E	M

- $\mathrm{V}=(-1)^{\mathrm{S}} \mathrm{M}^{*} 2^{\mathrm{E}}$
- Number of bits (float/double): $s[1], m[23 / 52]$, $\mathrm{e}[8 / 11]$.
- Normalized and de-normalized values.
- Bit fields: s, m, e to code respectively S, M, E.
- Normalized values ($e \neq 0, \mathrm{e} \neq 111 . .$.)
- E=e-bias (-126...127/-1022...1023).
- $M=1+m \quad(1 \leq M<2)$
- Trick for more precision: implied leading 1.

IEEE Floats

- De-normalized values (e=0 or 11...)
- e=0: E=1-bias, bias=2k-1-1
- Coding compensates for M not having an implied leading 1.
- $M=m$
- For numbers very close to 0 .
- e=11...:
- m=0, (signed infinite)
- $\mathrm{m}!=0, \mathrm{NaN}$.

Ranges of Floats

- Single precision (float) $2^{-126} \ldots 2^{127} \sim 10^{-38} \ldots 10^{38}$.
- Double precision (double) $2^{-1022} \ldots 2^{1023} \sim 10^{-308} \ldots 10^{308}$.

"Features" of IEEE floats

- $+0.0==0$ (binary representation $=00 .$.).
- If interpreted as unsigned int, floats can be sorted ($+x$ ascending, -x descending).
- All int values representable by doubles.
- Not all int values representable by floats.
- round to even (avoid stat. bias)
- round towards 0
- round up
- round down
- can't choose in C...

Properties (floats)

- Operations NOT associative.
- Not always inverse (infinity).
- Loss of precision.
- Ex: $x=a+b+c ; ~ y=b+c+d ;$

Important for compilers and programmers. Optimize or not?

- Monotonicity $a \geq b \Rightarrow a+x \geq b+x$
- Casts:
- int2float rounded, double2float rounded/overflow
- int2double, float2double OK
- float2int, double2int truncated/rounded/overflow.

IA32: The Good And The Bad

- Good: Uses internally 80 bits extended registers for more precision.
- Bad:
- Stack based.
- Side effects like changing values when loading or saving numbers in memory whereas register transfers are exact.
- Extensions: MMX, SSE, (Altivec). SIMD instructions = operations working in parallel on multiple data.

Numerical Precision

- Evaluation of precision
- absolute $\quad x \pm \alpha$
- relative $\quad x^{*}(1 \pm \alpha)$
- Be careful with division by very small values: Can amplify numerical errors.
- Numerical justification for Gauss' method to solve linear equations.

Character Sets

- By convention (standard), we assign codes to characters.
- Careful with programming languages C char = 1 byte, Java char = 2 bytes
- ASCII (American Standard Code for Information Interchange) common (7 bits), extended ASCII (8 bits).
- Unicode
- Other IEEE8859-x codings.
- Other Japanese codings...

More Complex Structures

- How to represent, e.g., struct $\{$ int $a, b ;$ char $c\}$?
- Use continuous bits for the successive fields.
- Compilers will align data!
- Try:

```
typedef struct { int a; char c; } foo_t;
int main()
{
    printf("%d\n", sizeof(foo_t));
    return 0;
}
```


What About Programs?

- Instructions coded into bytes.
. "opcode"
- Processors interpret them as their particular instruction sets (standard).

