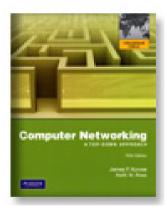


DNA Welcome & Introduction

Alexandre David 1.2.05 adavid@cs.aau.dk


Presentation of the Course

- Computer architecture
 - digital circuits
 - processor architecture
 - processor instruction sets
- Network architecture
 - protocol layers
 - physical
 - data link
 - transport
 - applicatoin

Course Books

- Essential of Computer
 Architecture Douglas E. Comer
- Computer Networking A Top-Down Approach – James F. Kurose & Keith W. Ross

 Connected to MVP and PSS so we'll share course materials.

- 5 lectures on computer architecture.
- 10 lectures on network architecture.
- 2 lecturers (Arne Skou & me).
- Lectures in 3x30 min.
- Marked oral exam.

- Understand how computers work.
 - Processors are everywhere.
 - Important to understand how they work to use them properly.
 - Write smaller, faster, correct programs.
 - Understand consequences of programming choices.

- Real stuff is very complex
 - complex timing issues
 - signal propagation noise
 - soon billion(s) of transistors
 - optimized circuitry
- But we don't need to know all low-level details
 - characteristics of major components
 - overall system view
 - consequences for programmers
 - consequences for (hardware) system

Computer Architecture

- Basics
 - digital circuits limits for hardware
 - data representation limits for software
- Processors
 - types of processors
 - instruction sets and operands
 - assembly and programming
 - compilers bridge the gap between high level languages and assembly – connection to SPO
- Memory
 - basics on VM
 - caches understanding performance