Processes

Lecture 12, May 19t 2011.
Alexandre David

Credits to Randy Bryant & Dave O’Hallaron
from Carnegie Mellon

Processes

m Definition: A process is an instance of a running program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key abstractions:
= Logical control flow
= Each program seems to have exclusive use of the CPU
= Private virtual address space
= Each program seems to have exclusive use of main memory

m How are these lllusions maintained?
" Process executions interleaved (multitasking) or run on separate cores
= Address spaces managed by virtual memory system
= we’ll talk about this in a couple of weeks

Concurrent Processes

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes are
running in parallel with each other

Process A Process B Process C

Time | 1

Context Switching

m Processes are managed by a shared chunk of OS code
called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some user process

m Control flow passes from one process to another via a
context switch

Process A Process B

I
I
I
I
I
I user code
I

kernel code } context switch
Time user code

kernel code } context switch

user code

fork: Creating New Processes

m int fork (void)

= creates a new process (child process) that is identical to the calling

process (parent process)
= returns O to the child process

returns child’s pid to the parent process

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;

}

m Fork is interesting (and often confusing) because
it is called once but returns twice

Understanding fork

Process n Child Process m

» pid t pid = fork(); » pid t pid = fork();

if (pid == 0) { if (pid == 0) {

printf ("hello from child\n") ; printf ("hello from child\n") ;
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n") ;
} }
» pid t pid = fork(); » pid t pid = fork();
if (pid == 0) { if (pid == 0) {
pid=m printf ("hello from child\n"); pid=0 printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }
pid t pid = fork(); pid t pid = fork();
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n") ; » printf ("hello from child\n") ;
} else { } else {
» printf ("hello from parent\n") ; printf ("hello from parent\n") ;

} }

hello from parent Which one is first? hello from child

Fork Example #1

m Parent and child both run same code

= Distinguish parent from child by return value from fork

m Start with same state, but each has private copy
" |Including shared output file descriptor
= Relative ordering of their print statements undefined

void forkl ()
{
int x = 1;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);
}

printf ("Bye from process %d with x = %d\n", getpid(), x);

Fork Example #2

m Both parent and child can continue forking

void fork2 ()

{
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("Bye\n") ;

Bze

L1 BLe

Bze

LO |11 [Bye

Fork Example #3

m Both parent and child can continue forking

void fork3()

{
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("L2\n") ;
fork () ;
printf ("Bye\n") ;

L0

L1l

L2

w
®

L2

L1l

L2

L2

w
®

10

Fork Example #4

m Both parent and child can continue forking

void fork4 ()
{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ;
if (fork() '= 0) {
printf ("L2\n") ;
fork () ;
}

}
printf ("Bye\n") ;

L0

L1l

L2

1"

Fork Example #5

m Both parent and child can continue forking

void fork5 ()

{
printf ("LO\n") ;

if (fork() == 0) {
printf ("L1\n") ; —xe
if (fork() == 0) { L2 | Bye
printf ("L2\n") ; |
fork () ; “Ll ye
} LO | Bye

}
printf ("Bye\n") ;

exit: Ending a process

m void exit(int status)
= exits a process
= Normally return with status O
= atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n");

}

void fork6 () {
atexit (cleanup) ;
fork () ;
exit(0) ;

13

Zombies

m Idea
" When process terminates, still consumes system resources

= Various tables maintained by OS
= Called a “zombie”
= Living corpse, half alive and half dead

m Reaping
= Performed by parent on terminated child
= Parent is given exit status information
= Kernel discards process

m What if parent doesn’t reap?

" |f any parent terminates without reaping a child, then child will be
reaped by init process

= So, only need explicit reaping in long-running processes

= e.g., shells and servers

14

Zombie \{roid fork7 ()
if (fork() == 0) {
Example /* child */
printf ("Terminating Child, PID = %d\n",
getpid());
exit (0) ;
} else {
printf ("Running Parent, PID = %d\n",
linux> ./forks 7 & getpid());
[1] 6639 while (1)
Running Parent, PID = 6639 ; /* Infinite loop */
Terminating Child, PID = 6640 }
linux> ps d
PID TTY TIME CMD

6585 ttyp? 00:00:00 tcsh .
6639 ttyp9 00:00:03 forks m ps shows child process as
6640 ttyp9 00:00:00 forks <defunct> “defunct”
6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated m Killing parent allows child to be
linux> ps reaped by init
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

15

Nonterminating

Child Example

linux> ./forks 8
Terminating Parent, PID
= 6676

Running Child, PID

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9

linux> kill

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

00:
00:
00:

6676

00:
00:

TIME
00:00
00:06
00:00

TIME
00:00
00:00

{

}

void fork8 ()

if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid()) ;
while (1)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n"
getpid()) ;
exit (0) ;

14

= 6675

CMD
tcsh
forks

PsS

CMD
tcsh

PsS

m Child process still active even though
parent has terminated

m Must kill explicitly, or else will keep
running indefinitely

16

wait: Synchronizing with Children

m int wait(int *child status)
= suspends current process until one of its children terminates
= return value is the pid of the child process that terminated

" ifchild status != NULL, then the object it points to will be set
to a status indicating why the child process terminated

17

wait: Synchronizing with Children

void fork9 () {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n") ;
}
else {
printf ("HP: hello from parent\n");
wait (&child status);
printf ("CT: child has terminated\n") ;
}
printf ("Bye\n") ;
exit (),

HP

18

execve: Loading and Running Programs

, Stack bottom
] Null-terminated
B int execve (env var strings
e
char *filename, Null-terminated
char *argv]], cmd line arg strings
char *envp|[] unused
) envp[n] == NULL
m Loads and runs in current process: envp[n-1]
= Executable £filename
envp[0] environ

" With argument list argv argv[argc] == NULL

argvlargc-1]

= And environment variable list envp

m Does not return (unless error)

argv|[0]

m Overwrites code, data, and stack [pea—
= keeps pid, open files and signal context envp
m Environment variables: argv
argc

" “name=value” strings
Stack frame for

" getenv and putenv :
J P ML Stack top 19

execve Example

if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);

exit (0) ;
}
}
argv[argc] = NULL
argv(argc-1] —> “/usr/include”
" —> “-1t”
argv|[0] —> “1s”
argv >
envp[n] = NULL
envp[n-1] —> “PWD=/usr/droh”
e —> “PRINTER=iron”
envp|0] —> “USER=droh”

environ >

Summary

m Processes

= At any given time, system has multiple active processes
" Only one can execute at a time on a single core, though

= Each process appears to have total control of
processor + private memory space

21

Summary (cont.)

m Spawning processes
" Call fork
® One call, two returns

m Process completion
" Callexit

® One call, no return
m Reaping and waiting for Processes
" Callwaitorwaitpid

m Loading and running Programs
" Call execve (or variant)

= One call, (normally) no return

22

