! Summary Chapter 7

Alexandre David
1.2.05
. UN,LCredlts to R.E. Bryant and

i Example C Program

main.c swap.c
int bufl[2] = {1, 2}; extern int buf[];
int main () int *bufpl0 = &buf[0];
{ static int *bufpl;
swap () ;
return O; void swap ()
} {

int temp;

bufpl = &buf[l];
temp = *bufpl;
*bufp0 = *bufpl;
*bufpl = temp;

05-05-2011 Aaborg University, CART'11

i Static Linking

= unix> ./p

s Programs are translated and linked using a compiler driver:

= unix> gcc -02 -g -0 p main.c swap.c -static

main.c

l

swap.c Source files

l

Translators
(cpp, ccl, as)

Translators
(cpp, ccl, as)

1

main.o

1

Swallp o Separately compiled
l relocatable object files

Linker (Id)

1 Fully linked executable object file
P (contains code and data for all functions
defined in main.c and swap.c)

i Why Linkers?

= Reason 1: Modularity

= Program can be written as a collection of smaller
source files, rather than one monolithic mass.

« Can build libraries of common functions (more on
this later)

= €.g., Math library, standard C library

i Why Linkers? (cont)

= Reason 2: Efficiency

« Time: Separate compilation
= Change one source file, compile, and then re-link.
= No need to recompile other source files.

= Space: Libraries

= Common functions can be aggregated into a single
file...

= Yet executable files and running memory images
contain only code for the functions they actually use.

i What Do Linkers Do?

= Step 1. Symbol resolution

= Programs define and reference symbols (variables

and functions):
= void swap() {..} /* define symbol swap */

= swap () ; /* reference symbol a */

= int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored (by compiler) in
symbol table.
= Symbol table is an array of structs
= Each entry includes name, size, and location of symbol.

i What Do Linkers Do? (cont)

= Step 2. Relocation

= Merges separate code and data sections into
single sections

= Relocates symbols from their relative locations in
the . o files to their final absolute memory
locations in the executable.

= Updates all references to these symbols to reflect
their new positions.

i Three Kinds of Object Files (Modules)

= Relocatable object file (. o file)

= Contains code and data in a form that can be combined with
other relocatable object files to form executable object file.

= Each .o file is produced from exactly one source (. c) file

= Executable object file (a. out file)

= Contains code and data in a form that can be copied directly
into memory and then executed.

= Shared object file (. so file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-
time.

« Called Dynamic Link Libraries (DLLs) by Windows

i Executable and Linkable Format (ELF)

= Standard binary format for object files

= Originally proposed by AT&T System V Unix
» Later adopted by BSD Unix variants and Linux

= One unified format for
= Relocatable object files (. o),
= Executable object files (a.out)
= Shared object files (. so)

= Generic name: ELF binaries

ELF Object File Format

Elf header
= Word size, byte ordering, file type (.o,
exec, .s0), machine type, etc. ELF header
= Segment header table Segment header table
= Page size, virtual addresses memory (required for executables)
segments (sections), segment sizes. text section
m .text section .rodata section
= Code

.data section

.rodata section

.bss section

= Read only data: jump tables, ... _symtab section

.data section

.rel.txt section

« Initialized global variables .
.rel.data section

= .bss section _
. . .debug section
= Uninitialized global variables
= "Block Started by Symbol” Section header table

= 'Better Save Space”
= Has section header but occupies no space

i Relocating Code and Data

Relocatable Object Files Executable Object File
System code .text 0
y Headers)
System data -data System code
\ main () > N N
.tex
main.o
fext swap ()
main () -tex
q
int buf[2]={1,2} | .data More system code p
System data
swap.o __int buf[2]={1 2} ~ .data
int *bufpO0=&buf[0]
swap () . text int *bufpl j— .bss
int *bufp0O=s&buf[0]] -data . symtab
.debug

static int *bufpl “b<

Even though private to swap, requires allocation in .bss

i Remember

= At compile time, the compiler does not know
where some functions are.

= At run time, the processor needs the address
INn memory.

= In between, someone has to resolve that. It
can be done statically or dynamically.

12

