Cache Memories

Lecture 9-10, May 3rd+5th 2011. Alexandre David

Credits to Randy Bryant & Dave O'Hallaron from Carnegie Mellon

Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware.
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.
- Typical system structure:

General Cache Organization (S, E, B)

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

No match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t=1	s=2	b=1
X	XX	Х

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

	•	
0	[0 <u>00</u> 0 ₂],	miss
1	[0 <u>00</u> 1 ₂],	hit
7	$[0\underline{11}1_2],$	miss
8	[1 <u>00</u> 0 ₂],	miss
0	$[0000_{2}]$	miss

	V	Tag	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

PP6.20 PP6.21

Ignore the variables sum, i, j

A Higher Level Example

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}</pre>
```


blackboard

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set Assume: cache block size 8 bytes Address of short int: t bits 0...01 100 6 tag find set 0 1 2 3 4 5 6 7 tag 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 tag

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set Assume: cache block size 8 bytes Address of short int: t bits 0...01 100 compare both valid? + match: yes = hit 0 1 2 3 4 5 6 7 0 | 1 | 2 | 3 | 6 | 7 tag tag block offset

No match:

One line in set is selected for eviction and replacement

short int (2 Bytes) is here

• Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

t=2	s=1	b=1
XX	X	X

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0	$[00\underline{0}0_{2}],$	miss
1	$[0001_{2}],$	hit
7	[01 <u>1</u> 1 ₂],	miss
8	[10 <u>0</u> 0 ₂],	miss
0	[0000 ₂]	hit

	V	Tag	Block
Set 0	1	00	M[0-1]
	1	10	M[8-9]

Set 1	1	01	M[6-7]	
	0			

A Higher Level Example

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}</pre>
```

Ignore the variables sum, i, j

blackboard

What about writes?

Multiple copies of data exist:

L1, L2, Main Memory, Disk

What to do on a write-hit?

- Write-through (write immediately to memory)
- Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)

What to do on a write-miss?

- Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
- No-write-allocate (writes immediately to memory)

Typical

- Write-through + No-write-allocate
- Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache:

32 KB, 8-way, Access: 4 cycles

L2 unified cache:

256 KB, 8-way, Access: 11 cycles

L3 unified cache:

8 MB, 16-way, Access: 30-40 cycles

Block size: 64 bytes for

all caches.

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 = 1 hit rate
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 1-2 clock cycle for L1
 - 5-20 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Lets think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

```
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles
```

This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories.

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Exercise session: Do it yourself.

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Concluding Observations

Programmer can optimize for cache performance

- How data structures are organized
- How data are accessed
 - Nested loop structure
 - Blocking is a general technique

All systems favor "cache friendly code"

- Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
- Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)