Cache Memories

Lecture 9-10, May 379+5t 2011.
Alexandre David

Credits to Randy Bryant & Dave O’Hallaron
from Carnegie Mellon

Today

m Cache memory organization and operation

Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware.

= Hold frequently accessed blocks of main memory

m CPU looks first for data in caches (e.g., L1, L2, and L3),

then in main memory.
m Typical system structure:

Gache)y |
memories

1L 7T

Bus interface

System bus

Memory bus

/0
bridge

Main
memory

PP6.10

General Cache Organization (S, E, B)

$=2¢ sets<

E = 2¢ lines per set

A

Cache size:
C =S x E x B data bytes

coee
cooe
coee
cececsscccessssscsessscseesse
coee
1 [e 1ol 51
valid bit ~——

B = 2 bytes per cache block (the data)

* Locate set
CaChe Read * Check if any line in set

has matching tag

E = 2¢ lines per set * Yes + line valid: hit
s A ~ * Locate data starting
4 at offset
o000

Address of word:

t bits s bits | b bits

A A
S=Zssets< eocooe

tag set block

index offset

0 000000000 00OCOCEOGEOGOEOEOGOEOGOEOSGSEOSOSOOSOOFO
o000
\.
data begins at this offset
v tag 0112 <" B-1
valid bit S~ ~— —

B = 2° bytes per cache block (the data)

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

S$=2 sets<

tag 0]1112)13]14]|5]6

Address of int:

t bits 0..01

100

tag 0]1112)13]14]|5]6

tag 0]1112)13]14]|5]6

tag 0]1]1|2]3]|4]5]6

find set

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

v tag 0j1|2(|3]14]|5

t bits

0..01

100

block offset

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

v tag 0|1]2]|3|4]|5]|6]|7

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t

1

s=2

b

1

X

XX

X

Set 0
Set1l
Set 2
Set 3

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [Oﬂlzlr MISS
8 [1000,], miss
0 [0000,] miss
v Tag Block
0 M[0-1]
1 0 M[6-7]

PP6.11

A Higher Level Example

PP6.20
PP6.21

int

{

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (1 = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] [j];
return sum;

int

sum array cols(double a[l6][16])

int 1, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (1 = 0; i < 16; i++)
sum += a[i] [j];
return sum;

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
\ J
'

32 B =4 doubles

blackboard

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

v| | tag | [0]1]2]3]4]5]6]7

tag |

thits | 0..01 | 100
v| | tag | [0o]1]2]3]4a]5]6]7 tag | 5/6]7
v] [tag | [o]a]2]3]a]5]6]7 tag | 5[6]7]] — find set
v| | tag | [o]1]2]3]4a]5]6]7 tag | 5/6]7

1"

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

Address of short int:

valid? + | match: yes = hit

compare both

t bits

0..01

100

v| [tag | |of1]2]3]4

6171 |lv] | tag | [o]2]2]3

block offset

12

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

valid? +

Address of short int:

match: yes = hit

compare both

t bits

0..01

100

v| | tag | [0o]1]2]3]4

617 v tag

block offset

short int (2 Bytes) is here

No match:

* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

t=2

s=1

b

1

XX

X

X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

seto |1 00 | Mm[0-1]
1 |10 [M[89]

[HEY

Set 1 01 M[6-7]

14

A Higher Level Example

int

{

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (1 = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] [j];
return sum;

int

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (1 = 0; i < 16; i++)
sum += a[i] [j];
return sum;

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
\ J
g

32 B =4 doubles

blackboard

15

What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk

m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?

= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)

m Typical

= Write-through + No-write-allocate
= Write-back + Write-allocate

16

Intel Core i7 Cache Hierarchy

Access: 30-40 cycles

L3 unified cache
(shared by all cores)

Block size: 64 bytes for
all caches.

Processor package

. Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,

: €gs €gs Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

| d-cache| | i-cache d-cache| | i-cache | 256 KB, 8-way,
" Access: 11 cycles

' | | L2 unified cache L2 unified cache | | ! |3 unified cache:

8 MB, 16-way,

Main memory

17

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 — hit rate

= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

18

Lets think about those numbers

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

19

Writing Cache Friendly Code

m Make the common case go fast
® Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

20

Today

m Performance impact of caches

" The memory mountain

Exercise session: Do it yourself.

21

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

22

Concluding Observations

m Programmer can optimize for cache performance
= How data structures are organized
" How data are accessed
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache friendly code”
= Getting absolute optimum performance is very platform specific
= Cache ssizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

23

