The Memory Hierarchy

Lecture 9, May 39, 2011
Alexandre David

Credits to Randy Bryant & Dave O’Hallaron
from Carnegie Mellon

Today

m Storage technologies and trends
H
|

Random-Access Memory (RAM)

m Key features
= RAM is traditionally packaged as a chip.
= Basic storage unit is normally a cell (one bit per cell).
= Multiple RAM chips form a memory.

m Static RAM (SRAM)

= Each cell stores a bit with a four or six-transistor circuit.

= Retains value indefinitely, as long as it is kept powered.

= Relatively insensitive to electrical noise (EMI), radiation, etc.
= Faster and more expensive than DRAM.

m Dynamic RAM (DRAM)

= Each cell stores bit with a capacitor. One transistor is used for access
= Value must be refreshed every 10-100 ms.

= More sensitive to disturbances (EMI, radiation,...) than SRAM.

= Slower and cheaper than SRAM.

SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 4o0r6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

Conventional DRAM Organization

m dxwDRAM:
= dw total bits organized as d supercells of size w bits

—

(to/from CPU)

Memory
controller

16x8DRAMchip ..
cols
| 0 1 2 3
2bits ! 0
—_— :
addr ! |
| L :
' FOWS
i 2 - |
| 3 |
8bits ! |
t >: :
data I

Internal row buffer

__

supercell
(2,1)

Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

16x8DRAMchip

| Cols

RAS = 2 ! 0 1 2 3 |

2 : :

PR 0 !

addr E i

! 1 !

Memory EROWS
controller 2 — — — —
g ! 3 |

———> — == g

data | N/ \/ \/ \/

Reading DRAM Supercell (2,1)

Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually
back to the CPU.

Internal row buffer

16x8DRAMchip

| Cols

cAS = 1 | 0 1 23 |

2 ! .

frmmlp | 0 |

addr | |

To CPU ! 1 i
' Rows |

Memory | .

controller ! 2

supercell . !
21) —— i
data . :

supercell

(21)

PP6.1

Memory Modules

addr (row = i, col = j)
O : supercell (i,j)
| | DRAM 0
— - 64 MB
[I 5 N memory module
I DRAM 7 Il » _ consisting of
ol - T eight 8Mx8 DRAMs
[l I .

bits bits bits bits bits bits bits bits
56-63 48-55 40-47 32-39 24-31 16-23 815 0-7

63 56 55 4847 40 39 32 31 2423 16 15 8 7 0

Memory
controller

64-bit doubleword at main memory address A

64-bit doubleword

Enhanced DRAMs

m Basic DRAM cell has not changed since its invention in 1966.
= Commercialized by Intel in 1970.

m DRAM cores with better interface logic and faster 1/O :
= Synchronous DRAM (SDRAM)
= Uses a conventional clock signal instead of asynchronous control
= Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

= Double data-rate synchronous DRAM (DDR SDRAM)
= Double edge clocking sends two bits per cycle per pin
= Different types distinguished by size of small prefetch buffer:
— DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits)
= By 2010, standard for most server and desktop systems
= Intel Core i7 supports only DDR3 SDRAM

B DDR3 I 1333MHz 3GB CL7

Kit w/3x 1GB BallistiX modules, CL7-7-7-24, 1.65V, for Core i7, GREEN

Tilbeher
Sammenlign dette produkt

Lagerstatus: @ 1 pa lager.
(1-2 dages leveringstid) Del med:

Lol x>

Trocor

Varenummer: 438707 Producentens varenr.: BL3KIT12864TG1337 Vaegt m/emballage: 0.13 kg Producentens garanti (md.): 120

Produktinfo Udvidet info Produktanmeldelser Tests Producentlinks Tilbeheor (3) Tip en ven

Generelt
Lagerkapacitet 3GB:3x1GB
Opgraderingstype Industristandard

Hukommelse

Type DRAM

Teknologi DDR3 SDRAM

Model DIMM 240-pin

Modul Hejde (tommer) 1.18

Hukommelsesfrekvens 1333 MHz (PC3-10600)

Segetids Timinger CL7 (7-7-7-24)

Dataintegritetskontrol Ikke-paritet

RAM egenskaber Aluminium varme spreder , ikke bufferet
Modulkonfiguration 128 x 64

Forsyningsspaending 1.65V

Blybelaegning Guld

Nonvolatile Memories

m DRAM and SRAM are volatile memories
" Lose information if powered off.

m Nonvolatile memories retain value even if powered off
= Read-only memory (ROM): programmed during production
" Programmable ROM (PROM): can be programmed once
"= Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
= Electrically eraseable PROM (EEPROM): electronic erase capability
= Flash memory: EEPROMs with partial (sector) erase capability
= Wears out after about 100,000 erasings.

m Uses for Nonvolatile Memories

" Firmware programs stored in a ROM (BIOS, controllers for disks,
network cards, graphics accelerators, security subsystemes,...)

= Solid state disks (replace rotating disks in thumb drives, smart
phones, mp3 players, tablets, laptops,...)

= Disk caches

1"

Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address,

data, and control signals.
m Buses are typically shared by multiple devices.

CPU chip

Register file

—\
A ALU
' System bus Memory bus

JC |
SR Cuin) G—"

Main
memory

12

Memory Read Transaction (1)

m CPU places address A on the memory bus.

Register file

Jr

%eax <1,:| ALU

Bus interface

Load operation: movl A, %eax

Main memory
I/0 bridge 0

A N
N—

| /IA—I\
\l—l/ X A

13

Memory Read Transaction (2)

m Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

Register file

%eax <:| ALU

Jr

Bus interface

Load operation: movl A, %eax

Main memory

I/0 bridge

A N

D —

XN

N

0

A

14

Memory Read Transaction (3)

m CPU read word x from the bus and copies it into register

%eax.

Register file

%eax

==
1t

Bus interface

ALU

Load operation: movl A, %eax

I/0 bridge

Main memory

>

K—=

0

A

15

Memory Write Transaction (1)

m CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

Register file

%eax y <:| ALU

Jr

Bus interface

Store operation: movl %eax, A

Ny
N—

Main memory
/0 bridge I A 0

16

Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file

: ALU

%eax

5

i il

Bus interface

Store operation: movl %eax, A

Main memory
I/0 bridge 0

N—

S N

YN
N—— A

17

Memory Write Transaction (3)

m Main memory reads data word y from the bus and stores
it at address A.

register file

: ALU

%eax

Y

—

Jr

bus interface

>

Store operation: movl %eax, A

I/0 bridge

main memory

K— =

0

A

18

Disk Access Time Example

m Given:
® Rotational rate = 7,200 RPM
= Average seek time =9 ms.
= Avg # sectors/track = 400.

m Derived:
® Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.

= Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
" Taccess =9 ms+4 ms+0.02ms

m Important points:
= Access time dominated by seek time and rotational latency.
= First bit in a sector is the most expensive, the rest are free.
= SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

= Disk is about 40,000 times slower than SRAM,
= 2,500 times slower then DRAM.

19

Reading a Disk Sector (1)

CPU chip

Register file

1r

<:| ALU

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port

(address) associated with disk controller.

e
memory

ﬁ F 0 bus >

USB Graphics Disk
‘T3°"tr°"e"T adapter controller
mouse keyboard Monitor

v

20

Reading a Disk Sector (2)

CPUchip | ,

Register file Disk controllgr reads the sector and

i> performs a direct memory access
<: Al (DMA) transfer into main memory.

LN\ Main
Bus interface |\,—|/ memory

[K S
i T

USB Graphics
controller adapter contioller

l

Mouse Keyboard Monitor
E3 21

Reading a Disk Sector (3)

CPU chip

................. ... When the DMA tranSfer Completes’
Register file the disk controller notifies the CPU
a AU | with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU)

_ Main
Bus interface <:> memory

o K= L
{L {} JL -

USB Graphics Disk
controller adapter controller

l

Mouse Keyboard Monitor .
o] .

Solid State Disks (SSDs)

I/O bus
Requests to read and

_ _ write logical disk blocks
Solid State Disk (SSD) N/
' Flash i

translation layer

Flash memory t

Block O Block B-1

Page 0 | Page1 | ---| Page P-1|| ... Page 0 | Page 1 | ---| Page P-1

Pages: 512KB to 4KB, Blocks: 32 to 128 pages

Data read/written in units of pages.

Page can be written only after its block has been erased
A block wears out after 100,000 repeated writes.

23

SSD Performance Characteristics

Sequential read tput 250 MB/s Sequential write tput 170 MB/s
Random read tput 140 MB/s Random write tput 14 MB/s
Rand read access 30 us Random write access 300 us

m Why are random writes so slow?
= Erasing a block is slow (around 1 ms)
= Write to a page triggers a copy of all useful pages in the block
= Find a used block (new block) and erase it
= Write the page into the new block
= Copy other pages from old block to the new block

24

SSD Tradeoffs vs Rotating Disks

m Advantages
= No moving parts = faster, less power, more rugged

m Disadvantages
"= Have the potential to wear out
= Mitigated by “wear leveling logic” in flash translation layer

= E.g. Intel X25 guarantees 1 petabyte (1015 bytes) of random
writes before they wear out

" |n 2010, about 100 times more expensive per byte

m Applications
= MP3 players, smart phones, laptops
= Beginning to appear in desktops and servers

25

Storage Trends

SRAM
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200
DRAM
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000
Disk
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4 3 29
typical size (MB) 1 10 160 1,000 20,000

160,000 1,500,000 1,500,000

CPU Clock Rates

Inflection point in computer history
when designers hit the “Power Wall”

1990

2010:1980

1980
CPU 8080
Clock
rate (MHz) 1
Cycle
time (ns) 1000
Cores 1
Effective
cycle 1000

time (ns)

386

20

50

50

Pentium Core i7

2500

2500

10,000

The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0
N Disk
10,000,000.0 * 2
1,000,000.0
SSD
100,000.0 A
10,000.0
g 1,000.0 -
100.0 \ DRAM
v E\\&\o\'\.
0.1 CPU O
0.0 ‘ |

1980 1985 1990 1995 2000 2003 2005 2010

Year

—&—Disk seek time
—&—Flash SSD access time
—-DRAM access time
—0—SRAM access time
—{+CPU cycle time
—O—Effective CPU cycle time

28

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality

29

Today

m Locality of reference
|

30

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

3

Locality Example

sum = 0;

sum += a[i];
return sum;

for (i = 0; i < n; i++)

m Data references

= Reference array elements in succession
(stride-1 reference pattern).

" Reference variable sum each iteration.

m Instruction references
= Reference instructions in sequence.
= Cycle through loop repeatedly.

Spatial locality

Temporal locality

Spatial locality
Temporal locality

32

Qualitative Estimates of Locality

m Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

m Question: Does this function have good locality with
respect to array a?

int sum array rows(int a[M] [N])
{

int i, j, sum = 0;

for (i = 0; 1 < M; i++)
for (j = 0; j < N; j++)
sum += a[i] []]:;
return sum;

Locality Example

m Question: Does this function have good locality with
respect to array a?

int sum array cols(int a[M] [N])

{

int 1, j, sum = 0;

for (j = 0; j < N; J++)
for (1 = 0; 1 < M; i++)
sum += a[i] []J]’
return sum;

PP6.8
Locality Example PP6.9

m Question: Can you permute the loops so that the function
scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (1 = 0; i < M; i++4)
for (jJ = 0; j < N; j++)
for (k = 0; k < N; k++)
sum += al[k] [1][]];
return sum;

Memory Hierarchies

m Some fundamental and enduring properties of hardware
and software:

= Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

" The gap between CPU and main memory speed is widening.
= Well-written programs tend to exhibit good locality.

m These fundamental properties complement each other
beautifully.

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

36

Today

|
|
m Caching in the memory hierarchy

37

An Example Memory Hierarchy

A

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

L5:

LO:

. CPU registers hold words retrieved
Registers

from L1 cache

L1: L1 cache
(SRAM) L1 cache holds cache lines retrieved
from L2 cache

L2:
L2 cache

(SRAM) L2 cache holds cache lines
retrieved from main memory

L3:
Main memory
(DRAM) Main memory holds disk blocks
retrieved from local disks

Local secondary storage Local disks hold files

(local disks) retrieved from disks on
remote network servers

Remote secondary storage
(tapes, distributed file systems, Web servers)

38

Caches

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

m Fundamental idea of a memory hierarchy:
" For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

" Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

m Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

39

Cache

Memory

General Cache Concepts

Smaller, faster, more expensive
memory caches a subset of

the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

40

General Cache Concepts: Hit

Cache

Memory

Request: 14

8 9 14 3

1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is in cache:
Hit!

4

General Cache Concepts: Miss

Cache

Memory

Request: 12

8 12 14 3
12 Request: 12

1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

42

General Caching Concepts:
Types of Cache Misses

m Cold (compulsory) miss
= Cold misses occur because the cache is empty.

m Conflict miss

"= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8,0, 8, 0, 8, ... would miss every time.
m Capacity miss

= QOccurs when the set of active cache blocks (working set) is larger than
the cache.

43

Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block On/Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware + OS
Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware
Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client
cache

Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 | Web proxy

server

44

Summary

m The speed gap between CPU, memory and mass storage
continues to widen.

m Well-written programs exhibit a property called locality.

m Memory hierarchies based on caching close the gap by
exploiting locality.

45

