
Processor Architecture V!
Wrap-Up!

Slides by Randal E. Bryant!
Carnegie Mellon University!

Lecture 7, April 28th 2011
Alexandre David

– 2 –!

Overview!
Wrap-Up of PIPE Design!

n  Performance analysis!
n  Fetch stage design!
n  Exceptional conditions!

Modern High-Performance Processors!
n  Out-of-order execution!

– 3 –!

Performance Metrics!
Clock rate!

n  Measured in Megahertz or Gigahertz!
n  Function of stage partitioning and circuit design!

l  Keep amount of work per stage small!

Rate at which instructions executed!
n  CPI: cycles per instruction!
n  On average, how many clock cycles does each instruction

require?!
n  Function of pipeline design and benchmark programs!

l  E.g., how frequently are branches mispredicted?!

– 4 –!

CPI for PIPE!
CPI ≈ 1.0!

n  Fetch instruction each clock cycle!
n  Effectively process new instruction almost every cycle!

l  Although each individual instruction has latency of 5 cycles!

CPI > 1.0!
n  Sometimes must stall or cancel branches!

Computing CPI!
n  C clock cycles!
n  I instructions executed to completion!
n  B bubbles injected (C = I + B)!

CPI = C/I = (I+B)/I = 1.0 + B/I!
n  Factor B/I represents average penalty due to bubbles!

– 5 –!

CPI for PIPE (Cont.)!
!B/I = LP + MP + RP!

n  LP: Penalty due to load/use hazard stalling!
l  Fraction of instructions that are loads !0.25!
l  Fraction of load instructions requiring stall !0.20!
l  Number of bubbles injected each time !1!
⇒ !LP = 0.25 * 0.20 * 1 = 0.05!

n  MP: Penalty due to mispredicted branches!
l  Fraction of instructions that are cond. jumps !0.20!
l  Fraction of cond. jumps mispredicted !0.40!
l  Number of bubbles injected each time !2!
⇒ !MP = 0.20 * 0.40 * 2 = 0.16!

n  RP: Penalty due to ret instructions!
l  Fraction of instructions that are returns !0.02!
l  Number of bubbles injected each time !3!
⇒ !RP = 0.02 * 3 = 0.06!

n  Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27!
⇒ !CPI = 1.27 (Not bad!)!

Typical Values!

– 6 –!

Exceptions!
n  Conditions under which pipeline cannot continue normal

operation!

Causes!
n  Halt instruction !(Current)!
n  Bad address for instruction or data !(Previous)!
n  Invalid instruction !(Previous)!
n  Pipeline control error !(Previous)!

Desired Action!
n  Complete some instructions!

l  Either current or previous (depends on exception type)!
n  Discard others!
n  Call exception handler!

l  Like an unexpected procedure call!

– 7 –!

Exception Examples!

Detect in Fetch Stage!

 irmovl $100,%eax
 rmmovl %eax,0x10000(%eax) # invalid address

 jmp $-1 # Invalid jump target

 .byte 0xFF # Invalid instruction code

 halt # Halt instruction

Detect in Memory Stage!

– 8 –!

Exceptions in Pipeline Processor #1!

Desired Behavior!
n  rmmovl should cause exception!

 # demo-exc1.ys
 irmovl $100,%eax
 rmmovl %eax,0x10000(%eax) # Invalid address
 nop
 .byte 0xFF # Invalid instruction code

0x000: irmovl $100,%eax

1! 2! 3! 4!

F! D! E! M!
F! D! E!0x006: rmmovl %eax,0x1000(%eax)

0x00c: nop

0x00d: .byte 0xFF

F! D!
F!

W!

5!

M!
E!
D!

Exception detected!

Exception detected!

– 9 –!

Side Effects in Pipeline Processor!

Desired Behavior!
n  rmmovl should cause exception!
n  No following instruction should have any effect!

 # demo-exc3.ys
 irmovl $100,%eax
 rmmovl %eax,0x10000(%eax) # invalid address
 addl %eax,%eax # Sets condition codes

0x000: irmovl $100,%eax

1! 2! 3! 4!

F! D! E! M!
F! D! E!0x006: rmmovl %eax,0x1000(%eax)

0x00c: addl %eax,%eax F! D!

W!

5!

M!
E!

Exception detected!

Condition code set!

– 10 –!

Avoiding Side Effects!
Presence of Exception Should Disable State Update!

n  When detect exception in memory stage !
l  Disable condition code setting in execute!
l  Must happen in same clock cycle!

n  When exception passes to write-back stage!
l  Disable memory write in memory stage!
l  Disable condition code setting in execute stage!

Implementation!
n  Hardwired into the design of the PIPE simulator!
n  You have no control over this!

– 11 –!

Rest of Exception Handling!
Calling Exception Handler!

n  Push PC onto stack!
l  Either PC of faulting instruction or of next instruction!
l  Usually pass through pipeline along with exception status!

n  Jump to handler address!
l  Usually fixed address!
l  Defined as part of ISA!

Implementation!
n  Havenʼt tried it yet!!

– 12 –!

Modern CPU Design!

ExecutionExecution

Functional
Units

Instruction ControlInstruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations
Prediction
OK?

DataData
Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register
Updates

– 13 –!

Instruction Control!

Grabs Instruction Bytes From Memory!
n  Based on Current PC + Predicted Targets for Predicted Branches!
n  Hardware dynamically guesses whether branches taken/not taken

and (possibly) branch target!

Translates Instructions Into Operations!
n  Primitive steps required to perform instruction!
n  Typical instruction requires 1–3 operations!

Converts Register References Into Tags!
n  Abstract identifier linking destination of one operation with sources

of later operations!

Instruction ControlInstruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Retirement
Unit

Register
File

Instruction ControlInstruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Retirement
Unit

Register
File

– 14 –!

Execution 
Unit!

n  Multiple functional units!
l  Each can operate in independently!

n  Operations performed as soon as operands available!
l  Not necessarily in program order!
l  Within limits of functional units!

n  Control logic!
l  Ensures behavior equivalent to sequential program execution!

Execution!Execution!

Functional!
Units!

Integer/!
Branch! FP!

Add! FP!
Mult!/Div! Load! Store!

Data!
Cache!

Prediction!
OK?!

Data!Data!
Addr!.! Addr!.!

General!
Integer!

Operation Results!

Register!
Updates! Operations!

– 15 –!

CPU Capabilities of Pentium III!
Multiple Instructions Can Execute in Parallel!

n  1 load!
n  1 store!
n  2 integer (one may be branch)!
n  1 FP Addition!
n  1 FP Multiplication or Division!

Some Instructions Take > 1 Cycle, but Can be Pipelined!
n  Instruction !Latency !Cycles/Issue!
n  Load / Store !3 !1!
n  Integer Multiply !4 !1!
n  Integer Divide !36 !36!
n  Double/Single FP Multiply !5 !2!
n  Double/Single FP Add !3 !1!
n  Double/Single FP Divide !38 !38!

!

PentiumPro Block Diagram!
P6 Microarchitecture!

n  PentiumPro!
n  Pentium II!
n  Pentium III!

Microprocessor Report
2/16/95

– 17 –!

PentiumPro Operation!
Translates instructions dynamically into “Uops”!

n  118 bits wide!
n  Holds operation, two sources, and destination!

Executes Uops with “Out of Order” engine!
n  Uop executed when!

l  Operands available!
l  Functional unit available!

n  Execution controlled by “Reservation Stations”!
l  Keeps track of data dependencies between uops!
l  Allocates resources!

– 18 –!

PentiumPro Branch Prediction!
Critical to Performance!

n  11–15 cycle penalty for misprediction!

Branch Target Buffer!
n  512 entries!
n  4 bits of history!
n  Adaptive algorithm!

l  Can recognize repeated patterns, e.g., alternating taken–not
taken!

Handling BTB misses!
n  Detect in cycle 6!
n  Predict taken for negative offset, not taken for positive!

l  Loops vs. conditionals!

– 19 –!

Example Branch Prediction!
Branch History !

n  Encode information about prior history of branch
instructions!

n  Predict whether or not branch will be taken!

State Machine!
n  Each time branch taken, transition to left!
n  When not taken, transition to right!
n  Predict branch taken when in state Yes! or Yes?!

T T T

Yes! Yes? No? No!

NT

T

NT NT

NT

– 20 –!

Pentium 4 Block Diagram!

n  Next generation microarchitecture!

Intel Tech. Journal!
Q1, 2001!

– 21 –!

Pentium 4 Features!
Trace Cache!
!
!

n  Replaces traditional instruction cache!
n  Caches instructions in decoded form!
n  Reduces required rate for instruction decoder!

Double-Pumped ALUs!
n  Simple instructions (add) run at 2X clock rate!

Very Deep Pipeline!
n  20+ cycle branch penalty!
n  Enables very high clock rates!
n  Slower than Pentium III for a given clock rate!

L2 Cache! Instruct.!
Decoder!

Trace!
Cache!

IA32!
Instrs.! uops!

Operations!

– 22 –!

Processor Summary!
Design Technique!

n  Create uniform framework for all instructions!
l  Want to share hardware among instructions!

n  Connect standard logic blocks with bits of control logic!

Operation!
n  State held in memories and clocked registers!
n  Computation done by combinational logic!
n  Clocking of registers/memories sufficient to control overall

behavior!

Enhancing Performance!
n  Pipelining increases throughput and improves resource

utilization!
n  Must make sure maintains ISA behavior!

