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Overview!
Wrap-Up of PIPE Design!

n  Performance analysis!
n  Fetch stage design!
n  Exceptional conditions!

Modern High-Performance Processors!
n  Out-of-order execution!
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Performance Metrics!
Clock rate!

n  Measured in Megahertz or Gigahertz!
n  Function of stage partitioning and circuit design!

l  Keep amount of work per stage small!

Rate at which instructions executed!
n  CPI: cycles per instruction!
n  On average, how many clock cycles does each instruction 

require?!
n  Function of pipeline design and benchmark programs!

l  E.g., how frequently are branches mispredicted?!
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CPI for PIPE!
CPI ≈ 1.0!

n  Fetch instruction each clock cycle!
n  Effectively process new instruction almost every cycle!

l  Although each individual instruction has latency of 5 cycles!

CPI > 1.0!
n  Sometimes must stall or cancel branches!

Computing CPI!
n  C clock cycles!
n  I instructions executed to completion!
n  B bubbles injected (C = I + B)!

CPI   =   C/I   =   (I+B)/I   =  1.0 + B/I!
n  Factor B/I represents average penalty due to bubbles!
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CPI for PIPE (Cont.)!
!B/I = LP + MP + RP!

n  LP: Penalty due to load/use hazard stalling!
l  Fraction of instructions that are loads !0.25!
l  Fraction of load instructions requiring stall !0.20!
l  Number of bubbles injected each time !1!
⇒ !LP = 0.25 * 0.20 * 1 = 0.05!

n  MP: Penalty due to mispredicted branches!
l  Fraction of instructions that are cond. jumps !0.20!
l  Fraction of cond. jumps mispredicted !0.40!
l  Number of bubbles injected each time !2!
⇒ !MP = 0.20 * 0.40 * 2 = 0.16!

n  RP: Penalty due to ret instructions!
l  Fraction of instructions that are returns !0.02!
l  Number of bubbles injected each time !3!
⇒ !RP = 0.02 * 3 = 0.06!

n  Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27!
⇒ !CPI = 1.27    (Not bad!)!

Typical Values!
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Exceptions!
n  Conditions under which pipeline cannot continue normal 

operation!

Causes!
n  Halt instruction !(Current)!
n  Bad address for instruction or data !(Previous)!
n  Invalid instruction !(Previous)!
n  Pipeline control error !(Previous)!

Desired Action!
n  Complete some instructions!

l  Either current or previous (depends on exception type)!
n  Discard others!
n  Call exception handler!

l  Like an unexpected procedure call!
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Exception Examples!

Detect in Fetch Stage!

  irmovl $100,%eax 
  rmmovl %eax,0x10000(%eax) # invalid address 

  jmp $-1                   # Invalid jump target 

  .byte 0xFF                # Invalid instruction code   

  halt                      # Halt instruction 

Detect in Memory Stage!
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Exceptions in Pipeline Processor #1!

Desired Behavior!
n   rmmovl should cause exception!

  # demo-exc1.ys 
  irmovl $100,%eax 
  rmmovl %eax,0x10000(%eax) # Invalid address 
  nop 
  .byte 0xFF                # Invalid instruction code   

0x000: irmovl $100,%eax 

1! 2! 3! 4!

F! D! E! M!
F! D! E!0x006: rmmovl %eax,0x1000(%eax) 

0x00c: nop 

0x00d: .byte 0xFF 

F! D!
F!

W!

5!

M!
E!
D!

Exception detected!

Exception detected!
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Side Effects in Pipeline Processor!

Desired Behavior!
n   rmmovl should cause exception!
n  No following instruction should have any effect!

  # demo-exc3.ys 
  irmovl $100,%eax 
  rmmovl %eax,0x10000(%eax) # invalid address 
  addl %eax,%eax          # Sets condition codes 

0x000: irmovl $100,%eax 

1! 2! 3! 4!

F! D! E! M!
F! D! E!0x006: rmmovl %eax,0x1000(%eax) 

0x00c: addl %eax,%eax F! D!

W!

5!

M!
E!

Exception detected!

Condition code set!
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Avoiding Side Effects!
Presence of Exception Should Disable State Update!

n  When detect exception in memory stage !
l  Disable condition code setting in execute!
l  Must happen in same clock cycle!

n  When exception passes to write-back stage!
l  Disable memory write in memory stage!
l  Disable condition code setting in execute stage!

Implementation!
n  Hardwired into the design of the PIPE simulator!
n  You have no control over this!



– 11 –!

Rest of Exception Handling!
Calling Exception Handler!

n  Push PC onto stack!
l  Either PC of faulting instruction or of next instruction!
l  Usually pass through pipeline along with exception status!

n  Jump to handler address!
l  Usually fixed address!
l  Defined as part of ISA!

Implementation!
n  Havenʼt tried it yet!!
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Modern CPU Design!
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Instruction Control!

Grabs Instruction Bytes From Memory!
n  Based on Current PC + Predicted Targets for Predicted Branches!
n  Hardware dynamically guesses whether branches taken/not taken 

and (possibly) branch target!

Translates Instructions Into Operations!
n  Primitive steps required to perform instruction!
n  Typical instruction requires 1–3 operations!

Converts Register References Into Tags!
n  Abstract identifier linking destination of one operation with sources 

of later operations!

Instruction ControlInstruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions
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Retirement
Unit

Register
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Execution 
Unit!

n  Multiple functional units!
l  Each can operate in independently!

n  Operations performed as soon as operands available!
l  Not necessarily in program order!
l  Within limits of functional units!

n  Control logic!
l  Ensures behavior equivalent to sequential program execution!

Execution!Execution!

Functional!
Units!

Integer/!
Branch! FP!

Add! FP!
Mult!/Div! Load! Store!

Data!
Cache!

Prediction!
OK?!

Data!Data!
Addr!.! Addr!.!

General!
Integer!

Operation Results!

Register!
Updates! Operations!
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CPU Capabilities of Pentium III!
Multiple Instructions Can Execute in Parallel!

n  1 load!
n  1 store!
n  2 integer (one may be branch)!
n  1 FP Addition!
n  1 FP Multiplication or Division!

Some Instructions Take > 1 Cycle, but Can be Pipelined!
n  Instruction !Latency !Cycles/Issue!
n  Load / Store !3 !1!
n  Integer Multiply !4 !1!
n  Integer Divide !36 !36!
n  Double/Single FP Multiply !5 !2!
n  Double/Single FP Add !3 !1!
n  Double/Single FP Divide !38 !38!

!



PentiumPro Block Diagram!
P6 Microarchitecture!

n  PentiumPro!
n  Pentium II!
n  Pentium III!

Microprocessor Report 
2/16/95 
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PentiumPro Operation!
Translates instructions dynamically into “Uops”!

n  118 bits wide!
n  Holds operation, two sources, and destination!

Executes Uops with “Out of Order” engine!
n  Uop executed when!

l  Operands available!
l  Functional unit available!

n  Execution controlled by “Reservation Stations”!
l  Keeps track of data dependencies between uops!
l  Allocates resources!
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PentiumPro Branch Prediction!
Critical to Performance!

n  11–15 cycle penalty for misprediction!

Branch Target Buffer!
n  512 entries!
n  4 bits of history!
n  Adaptive algorithm!

l  Can recognize repeated patterns, e.g., alternating taken–not 
taken!

Handling BTB misses!
n  Detect in cycle 6!
n  Predict taken for negative offset, not taken for positive!

l  Loops vs. conditionals!
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Example Branch Prediction!
Branch History !

n  Encode information about prior history of branch 
instructions!

n  Predict whether or not branch will be taken!

State Machine!
n  Each time branch taken, transition to left!
n  When not taken, transition to right!
n  Predict branch taken when in state Yes! or Yes?!

T T T 

Yes! Yes? No? No! 

NT 

T 

NT NT 

NT 
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Pentium 4 Block Diagram!

n  Next generation microarchitecture!

Intel Tech. Journal!
Q1, 2001!
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Pentium 4 Features!
Trace Cache!
!
!

n  Replaces traditional instruction cache!
n  Caches instructions in decoded form!
n  Reduces required rate for instruction decoder!

Double-Pumped ALUs!
n  Simple instructions (add) run at 2X clock rate!

Very Deep Pipeline!
n  20+ cycle branch penalty!
n  Enables very high clock rates!
n  Slower than Pentium III for a given clock rate!

L2 Cache! Instruct.!
Decoder!

Trace!
Cache!

IA32!
Instrs.! uops!

Operations!
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Processor Summary!
Design Technique!

n  Create uniform framework for all instructions!
l  Want to share hardware among instructions!

n  Connect standard logic blocks with bits of control logic!

Operation!
n  State held in memories and clocked registers!
n  Computation done by combinational logic!
n  Clocking of registers/memories sufficient to control overall 

behavior!

Enhancing Performance!
n  Pipelining increases throughput and improves resource 

utilization!
n  Must make sure maintains ISA behavior!


