! Processor Architecture I

Alexandre David

i Overview

= Introduction: from transistors to gates.
= and from gates to circuits.

s 4.1
s 4.2
= Micro+macro code.

i Evolution of Computers

= Early systems

« CPU (central processing unit) controlled the
entire system

= Responsible for I/O, computations, ...
= Modern computers
= Decentralized architecture

= Processors distributed (I/0)
= CPU still controls other processors

i General Purpose CPU

= Very complex because
= designed for wide variety of tasks — multiple roles
= contains special purpose sub-units
= eX: core i/ has 731M transistors
= supports protection and privileges (OS/applic.)
= supports priorities (I/0)
= data size (32/64-bit registers)
= high speed — parallelism = replication

i CPU Visible State

= Visible for ISA, used by compiler (&

assembler) — there may be other registers
etc... that depend on the CPU generation.

= Registers (classify them), condition codes,

status & memory.

= Memory=array of bytes (abstraction).

Stat: Program Status

DMEM: Memory

CC:
RF: Program registers Condition
- - codes
seaX °E€S1
Secx Sedi ZE | SE|OF
edx zesp
Sebx Sebp PC

i ISA

= Classify:

= load/store
= I/i/m operands
= arithmetics

= JUMpSs
= (Cmov)

= Ccall/return

= Stack

= Encoding:

= Opcode+
operands

Byte

halt

nop

rrmovl rA, B
irmovl V, rB
rmmovl rA, D (rB)
mrmovl D (rB),rA
oP1 rA, 1B

jXX Dest
cmovXX rA, rB
call Dest

ret

pushl rA

popl rA

rA

rB

rB

rA

rB

rA

rB

fn

rA

rB

fn

Dest

fn

rA

rB

Dest

rA

rA

i ISA — Notes

= No memory — memory transfer.
= No imm — memory transfer (x86 can do it).

= Restricted operators (add, sub, and, xor).
= Only register — register operands.
= Typical of load/store architectures (also RISC).

= Conditional jumps depend on combinations of
flags.
« Similar for conditional move.

= Call, ret, pop, and push implicitly modify the
stack (& stack pointer).

i Encoding

= 1 byte encoding = code + function.
« Unique combination for every instruction.

= Register operands have a unique identifier.

Operations

addl

subl

andl

xXorl

= eax:0, ecx:1,... none:F

= "none” important for design

6

0

6

1

6

2

Branches

0

1

2

Jne
jge

Jjg

rrmov.l

cmovlile

cmov.l

cmove

Moves

0| cmovne

1] cmovge

2 cmovg

PP4.1
PP4.2

i Status Code

= State of the processor
= AOK normal
« HLT halted
= ADR invalid address
= INS invalid instruction

i Y86 — X86

= Y86 simplified model for X86.

= Code is similar, except for
= move instructions
= restrictions

= — may need more instructions
»« Not important, we abstract from that.

= Reason on Y86 level, exercise with both
(simulator Y86, gcc for X86).

10

i Y86 Assembly

= Instructions as described with registers.

= Assembly directives.
= Where to put the code (.pos).
= Align the code (.align).
= Declare data (.long).
= X86 has more.

PP4.3

= Label declarations (used for jump offsets).

= Assembled into bytes.
= Y86 interpret the bytes.

11

i Logic Design

= How to implement the hardware to recognize
the instruction codes.

= Logic that
= reads bytes,
= interprets bytes (switch),
« performs operations,
= Updates state.

= [ransistors — gates — functions & blocks.
= Processor design at block level.

12

i Background

= Voltage: difference of potentials.
= Vcc — ground (=0).
= Volts (V)

= Current: flow of electrons.
= Amperes (A)

= Ohm’s law: U = RI

= Dissipated power: P = UI = U¢/R

13

i Typical Chips

= Operate on low voltage (5V, less for
processors) — see power dissipation.

= Always 2 lines
« ground (0V)
= power (5V)
= Diagrams usually omit ground and power.

14

i Transistor Basic building

block of digital
collector circuits

C

/\ large current flows
base B LI< = from point C to point E
/

small current flows
from point B to E

E Acts like a switch.
emitter

12-04-2011 CART - Aalborg University

15

pure silicon
with perfect
crystalline structure

i How Are They Made?

photo-lithography

sand

12-04-2011

D

slice into wafers

doping materials (N/P)
metal (copper/gold)

CART - Aalborg University

connect &
package U

:

16

i Boolean Algebra

= Mathematical basis for digital circuits.
= From boolean functions to gates.
= Basic functions: and, or, not.

= In practice, cheaper to have nand & nor.

A B A and B A B AorB A not A
0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1

17

i Example: Not

+5 volts

ECRIN

output

input

0 volts

12-04-2011 CART - Aalborg University

18

i Gates

= Primitive boolean functions.
= Level of abstraction on integrated circuits.

1 = =

nand gate nor gate inverter

Symbols used in circuits.

12-04-2011 CART - Aalborg University 19

i Logic Gate Technology

= Transistor-transistor technology (TTL)
= connect directly gates together to form boolean

functions

input from

power button —

input from ———

disk

12-04-2011

B

and function

CART - Aalborg University

{>Q— output

20

i Design of Functions

= Find a boolean expression that does what
you need

= and feed it to a tool that optimizes it to minimize
the number of gates.

= Come up with the truth table of your function
= Which is converted to a boolean function.

21

output

output

o

22

CART - Aalborg University

12-04-2011

i Combinatorial Circuits

BRI EIEIEED BEIELEIBEIEEE HTTTTTT

— —

—

=5 =3 ‘_
|
DEOEOEE UOUEDED (OEEEEEE

7400 7402 7404

= Outputs = function(inputs)
= change outputs only when inputs changes

» Need states to perform sequences of operations
without sustained inputs
= Maintain states
= Use a clock

23

i Practical Concerns

= Power
« consumption: how to feed

= dissipation P=CFV?Z (C: capacitance, F: frequency)
how not to burn

= Timing — gates need time to settle.

= Clock synchronization.
= Update upon rise or fall of clock signal.

24

clock

i Clock Skew

Signals need time to propagate.

Local clocks are used on larger
systems — need to synchronize

e,

-] IC;

c, []| them.
The speed of light is too slow.

12-04-2011

CART - Aalborg University 25

i Logic Design & HCL

= Design logic with gates — but not one by one
and not manually!

» Use an adapted language for that. Here HCL
(hardware control language) for educational
pUrposes.

» C-like language to express boolean formulas.

= Combinatorial circuits built out of these formulas.

= Acyclic network of gates: signal propagates from
inputs to outputs — boolean functions.

26

i Exam

ple

= bool eq = (a && b) || (a && Ib);

Bit equal

1 -

D,

— eq

Y
BT

-

PP4.8

27

i Multiplexor

PP4.9

= Function: choose an input signal depending
on a selection signal.
bool out = (s && a) || (Is && b);

» Select results, functions, etc...

S

KZBi’[MUX

=D

out

28

i Word-Level Combinatorial Circuits

= Operations defined at word level (~integers).
= Treat groups of bits together.
= Define functions at word-level.

29

i Example: Equality Test
= bool Eq = (A == B);

A). Bit-level implementation B). Word-level abstraction
by, — e
> Bit equal Ja
dzgy — |
Dy — e
% Bit equal REL
dzgo |
: T W | = A-B
(] (] q -
A_
b, — e
1 Bit equal o
8.1]
b, — e
’ Bit equal Jo
ao_

12-04- Qg

i Multiplexor At Word-Level

Y A). Bit-level implementation B). Word-level abstraction

—

int Out = |
s : A;
1 : B;

out,

.

Aalborg University 31

i Use: Select

m1nt Outd = |

sl && !sO A; # 00
sl B, # 01
l's0 C;, # 10
1 D, # 11
]
- S|mp||f|ed Select. 2(1)

12-04-2011 CART - Aalborg University

PP4.10

32

i ALU

= 2 operand inputs + 1 control input.
= Operands X and Y.
= Control selects operation.

= Same principle as select, we abstract from the
exact design.

cr >»

X+Y

33

i Memory & Clocking

= Memory stores states.
= Functions only propagates signals.

= Memory implemented as flip-flop-like circuits.

Have feedback loops to “keep” bits.
= Registers (hardware or program).
= Clocks synchronize when to update.

=« Between updates, signals propagate.
» Clock signal rises — registers are updated.

34

*Storing 1 Bit

12-04-2011

V.

In

v,
V
1

Bistable Element

{>°qQ+

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Vin
CART - Aalborg University

12-04-2011

i Storing 1 Bit (cont.)

Bistable Element

Q+
lq Q_
g =0or1
2
LA
/
/o
N _|
/ Metastable
/
01 ’/
Stable 0 =0 // o5 o5 o1 o5 oo

Vin
CART - Aalborg University

/ Stable 1

36

/ Stable 1

Metastable

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

etastable

Stable left Stable right

12-04-2011 CART - Aalborg University

i Storing and Accessing 1 Bit

Bistable Element

R-S Latch
—Q+ 5 Q+
'd O— —
Q . Q
g =0orl
Resetting Setting Storing

12-04-2011 CART - Aalborg University 38

1-Bit Latch

D
Data [

D Latch

1

Clock

Latching

Storing

Dc!d

39

Registers

Structure

Q+

Q+

Q+

Q+

Q+

Q+

O—

Q+

OO0 IO OO0 |00 |00 |O0(0O0

Q+

Clock

= Stores word of data
= Different from program registers seen in assembly code

= Collection of edge-triggered latches
= Loads input on rising edge of clock

40

i Clock Synchronization

State = x State =y
Rising
Input=y | | Output = x Output =y
clock
—DIX—> =~ « = >

= Register operations are synchronized.
= Stores data bits.

= For most of time acts as barrier between input and
output.

= As clock rises, loads input.

i Register File

= Set of program registers.
= Local and fast access storage.
= Small.
= Fixed size (machine word).

42

i Memory

= Abstract & simplified model.

= Simple array of byte, no hierarchy.

= We’ |l see later the hierarchy & virtual memory
system.

43

{ Micro/Macro-code

i Complement

= We' |l focus on gate/logic design.
= = simplified model.
= Reality is more complex.
= Design is at a higher level.
= We’ |l see hints of correspondence to micro-code.

45

i Microcode

= How to implement complex CPU?
= Program the complex instructions.

= Visible machine language = macro instruction
set.

= Internal language = micro-code.

= Microcontroller inside CPUs that decode and
execute macro-instructions.

= RISC
= Processors are all RISCs in the end.

= Key: Easier to write programs with micro-code
than to build hardware from scratch.

46

i Microcode

CPU <

macro instruction set

(implemented with microcode)

micro instruction set

(implemented with digital logic)

12-04-2011

CART - Aalborg University

visible to
- programmer

hidden
</ (internal)

> Microcontroller

47

i Data and Register Sizes

= Size of visible register may differ from
size of internal registers.

=« EX: Could implement 32-bit instruction set on a
16-bit microcontroller.

48

i Advantages/Drawbacks

= Advantages

= Can change microcode and keep the same
macro-instruction set!

= Less prone to errors, can be updated more easily.

= Drawback
» Cost in performance — overhead.

49

i Vertical Microcode

= Simple view of microcontroller ~ standard
processor.

= Execution of micro-code like assembly.
= One micro-instruction at a time.
s Access to different units.

s Decode each macro-instruction and execute
micro-code.

= Easy to read/write, bad performance.
= Not the case in practice.

50

i Horizontal Microcode

= Use implicit parallelism.
= Utilize units in parallel when possible.

s Control data movements and the different
hardware units at the same time.

= Very difficult to program.

= Long instruction:
|lexec op1l unitl|exec op2 unit2|transfer this
register there|...

51

i Example Architecture

Arithmetic
Logic
Unit — result 1 result 2
(ALU) ' '
operand 1 operand 2

]

Y

| |

macro
general-
purpose
registers

P -

register access

|

< data transfer mechanism

12-04-2011

CART - Aalborg University

>

52

Unit Command Meaning
000 No operation
001 Add
010 Subtract
ALU 011 Multiply
100 Divide
101 Left shift
110 Right shift
111 Continue previous operation
operand 0 No operation
1o0r2 1 Load value from data transfer mechanism
result 0 No operation
1o0r2 1 Send value to data transfer mechanism
00xxxx Nooperation
register 01xxxx Move register xxxx to data transfer mechanism
interface | 10xxxx Move data transfer mechanism to register xxxx
11xxxx No operation
ALU Oper.1 Oper.2? Res.l Res.2 Register interface
A A
P A A A
X X X : X : X : X | X : X X X X X
12-04-2011

i Horizontal Microcode

= Not like conventional programs.

= Each instruction takes one cycle
= but not all operations take one cycle

= special care for timing, wait for units that need
more cycles

ALU OP, OP, RES; RES, REG. INTERFACE

1 1 1 0 :0 : 0 : 0 :0 ©0 O 0 0 O

continue

54

i Intelligent Microcontroller

= Schedules instructions & units.
= Handles operations in parallel.

= Performs branch prediction.

= May try 2 paths and discard the results of the
wrong one later.

=« Important: Keep the sequential semantics.

s Qut-of-order execution

= Use scoreboard to keep track of results and
dependencies

55

i Conclusion

= Does it matter?

= Yes! Understand your hardware and its
technology.

»« Use it in a better way. Reduce branches, or make
them easy to guess.
EX:
for(i =0, j = n-1; i < j; ++i,--j) swap(&a[i],&a[j])
harder than
for(i = 0; i < n/2; ++i) swap(&a[i],&a[n-1-i])

56

