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Overview 
n  Introduction: from transistors to gates. 

n  and from gates to circuits. 

n  4.1 
n  4.2 
n  Micro+macro code. 
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Evolution of Computers 
n  Early systems 

n  CPU (central processing unit) controlled the 
entire system 

n  Responsible for I/O, computations, … 

n  Modern computers 
n  Decentralized architecture 
n  Processors distributed (I/O) 
n  CPU still controls other processors 
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General Purpose CPU 
n  Very complex because 

n  designed for wide variety of tasks – multiple roles 
n  contains special purpose sub-units 
n  ex: core i7 has 731M transistors 
n  supports protection and privileges (OS/applic.) 
n  supports priorities (I/O) 
n  data size (32/64-bit registers) 
n  high speed – parallelism = replication 
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CPU Visible State 
n  Visible for ISA, used by compiler (& 

assembler) – there may be other registers 
etc… that depend on the CPU generation. 

n  Registers (classify them), condition codes, 
status & memory. 

n  Memory=array of bytes (abstraction). 

%eax 

%ecx 

%edx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

RF: Program registers"

ZF SF OF 

CC: 
Condition 

codes"

PC"

DMEM: Memory"

Stat: Program Status"
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ISA 
n  Classify: 

n  load/store 
n  r/i/m operands 
n  arithmetics 
n  jumps 
n  (cmov) 
n  call/return 
n  stack 

n  Encoding: 
n  opcode+ 

operands 

Byte! 0 1 2 3 4 5 

pushl rA" A 0 rA" F 

jXX Dest" 7 fn" Dest"

popl rA" B 0 rA" F 

call Dest" 8 0 Dest"

rrmovl rA, rB" 2 0 rA" rB"

irmovl V, rB" 3 0 F rB" V"

rmmovl rA,D(rB) 4 0 rA" rB" D"

mrmovl D(rB),rA" 5 0 rA" rB" D"

OPl rA, rB" 6 fn" rA" rB"

ret 9 0 

halt 0 0 

nop 1 0 

cmovXX rA, rB" 2 fn" rA" rB"
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ISA – Notes 
n  No memory → memory transfer. 
n  No imm → memory transfer (x86 can do it). 
n  Restricted operators (add, sub, and, xor). 

n  Only register – register operands. 
n  Typical of load/store architectures (also RISC). 

n  Conditional jumps depend on combinations of 
flags. 
n  Similar for conditional move. 

n  Call, ret, pop, and push implicitly modify the 
stack (& stack pointer). 
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Encoding 
n  1 byte encoding = code + function. 

n  Unique combination for every instruction. 

n  Register operands have a unique identifier. 
n  eax:0, ecx:1,… none:F 
n  “none” important for design 

addl 6 0 

subl 6 1 

andl 6 2 

xorl 6 3 

jmp 7 0 

jle 7 1 

jl 7 2 

je 7 3 

jne 7 4 

jge 7 5 

jg 7 6 

Operations! Branches!

rrmovl 2 0 

cmovle 2 1 

cmovl 2 2 

cmove 2 3 

cmovne 2 4 

cmovge 2 5 

cmovg 2 6 

Moves!

PP4.1 
PP4.2 
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Status Code 
n  State of the processor 

n  AOK normal 
n  HLT halted 
n  ADR invalid address 
n  INS invalid instruction 
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Y86 – X86 
n  Y86 simplified model for X86. 
n  Code is similar, except for 

n  move instructions 
n  restrictions 

n  → may need more instructions 
n  not important, we abstract from that. 
n  Reason on Y86 level, exercise with both 

(simulator Y86, gcc for X86). 
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Y86 Assembly 
n  Instructions as described with registers. 
n  Assembly directives. 

n  Where to put the code (.pos). 
n  Align the code (.align). 
n  Declare data (.long). 
n  X86 has more. 

n  Label declarations (used for jump offsets). 
n  Assembled into bytes. 
n  Y86 interpret the bytes. 

PP4.3 
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Logic Design 
n  How to implement the hardware to recognize 

the instruction codes. 
n  Logic that 

n  reads bytes, 
n  interprets bytes (switch), 
n  performs operations, 
n  updates state. 

n  Transistors → gates → functions & blocks. 
n  Processor design at block level. 
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Background 
n  Voltage: difference of potentials. 

n  Vcc – ground (=0). 
n  Volts (V) 

n  Current: flow of electrons. 
n  Amperes (A) 

n  Ohm’s law: U = RI 
n  Dissipated power: P = UI = U2/R 
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Typical Chips 
n  Operate on low voltage (5V, less for 

processors) – see power dissipation. 
n  Always 2 lines 

n  ground (0V) 
n  power (5V) 

n  Diagrams usually omit ground and power. 
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Transistor Basic building 
block of digital 
circuits 

Acts like a switch. 
emitter 

base 

collector 
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How Are They Made? 

sand 

pure silicon 
with perfect 
crystalline structure 

slice into wafers 

photo-lithography 

doping materials (N/P) 
metal (copper/gold) 

cut 

connect & 
package 
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Boolean Algebra 
n  Mathematical basis for digital circuits. 
n  From boolean functions to gates. 
n  Basic functions: and, or, not. 
n  In practice, cheaper to have nand & nor. 
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Example: Not 
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Gates 
n  Primitive boolean functions. 
n  Level of abstraction on integrated circuits. 

Symbols used in circuits. 
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Logic Gate Technology 
n  Transistor-transistor technology (TTL) 

n  connect directly gates together to form boolean 
functions 

and function 
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Design of Functions 
n  Find a boolean expression that does what 

you need 
n  and feed it to a tool that optimizes it to minimize 

the number of gates. 

n  Come up with the truth table of your function 
n  which is converted to a boolean function. 
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Truth Table 
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Combinatorial Circuits 

n  Outputs = function(inputs) 
n  change outputs only when inputs changes 
n  need states to perform sequences of operations 

without sustained inputs 
n  maintain states 
n  use a clock 
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Practical Concerns 
n  Power  

n  consumption: how to feed 
n  dissipation P=CFV2 (C: capacitance, F: frequency) 

how not to burn 

n  Timing – gates need time to settle. 
n  Clock synchronization. 

n  Update upon rise or fall of clock signal. 
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Clock Skew 

Signals need time to propagate. 
Local clocks are used on larger 
systems → need to synchronize 
them. 
The speed of light is too slow. 
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Logic Design & HCL 
n  Design logic with gates – but not one by one 

and not manually! 
n  Use an adapted language for that. Here HCL 

(hardware control language) for educational 
purposes. 

n  C-like language to express boolean formulas. 
n  Combinatorial circuits built out of these formulas. 
n  Acyclic network of gates: signal propagates from 

inputs to outputs → boolean functions. 
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Example 
n  bool eq = (a && b) || (!a && !b); 

PP4.8 

Bit equal"a"

b"

eq"
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Multiplexor 
n  Function: choose an input signal depending 

on a selection signal. 
bool out = (s && a) || (!s && b); 
n  Select results, functions, etc… 

PP4.9 

Bit MUX"

b"

s"

a"
out"
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Word-Level Combinatorial Circuits 

n  Operations defined at word level (~integers). 
n  Treat groups of bits together. 
n  Define functions at word-level. 
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Example: Equality Test 
n  bool Eq = (A == B); 

b31"
Bit equal"

a31"

eq31"

b30"
Bit equal"

a30"

eq30"

b1"
Bit equal"

a1"

eq1"

b0"
Bit equal"

a0"

eq0"

Eq"

A). Bit-level implementation! B). Word-level abstraction!

="
B"

A"

A = B"
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Multiplexor At Word-Level 

b31"

s"

a31"

out31"

b30"

a30"

out30"

b0"

a0"

out0"

B"

A"
Out"

int Out = [ 
  s : A; 
  1 : B; 
]; 

s"

A). Bit-level implementation! B). Word-level abstraction!

MUX"
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Use: Select 
n  int Out4 = [ 
  !s1 && !s0 : A; # 00 
  !s1        : B; # 01 
  !s0        : C; # 10 
  1          : D; # 11 
] 

n  Simplified select. 

PP4.10 

D"

A"
Out4"

s0"
s1"

MUX4"B"
C"
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ALU 
n  2 operand inputs + 1 control input. 

n  Operands X and Y. 
n  Control selects operation. 
n  Same principle as select, we abstract from the 

exact design. 

A"
L"
U"

Y"

X"

X + Y"

0"

A"
L"
U"

Y"

X"

X - Y"

1"

A"
L"
U"

Y"

X"

X & Y"

2"

A"
L"
U"

Y"

X"

X ^ Y"

3"

A"

B"

A"

B"

A"

B"

A"

B"
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Memory & Clocking 
n  Memory stores states. 

n  Functions only propagates signals. 
n  Memory implemented as flip-flop-like circuits. 

Have feedback loops to “keep” bits. 
n  Registers (hardware or program). 

n  Clocks synchronize when to update. 
n  Between updates, signals propagate. 
n  Clock signal rises → registers are updated. 
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Physical Analogy 
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Storing and Accessing 1 Bit 

Q+

Qœ

R

S

Q+

Qœ

R

S

Resetting 
1 

0 

1 0 

0 1 

Q+

Qœ

R

S

Q+
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R

S

Setting 
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0 1 

1 0 

Q+

Qœ

R

S
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R

S

Storing 
0 

0 

!q q 

q !q 

Q+ 

Q– 

R 

S 

R-S Latch 
Bistable Element 

Q+ 

Q– 

q 

!q 

q = 0 or 1 
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1-Bit Latch 
D Latch 

Q+ 

Q– 

R 

S 

D 

C 

Data 

Clock 

Latching 

1 
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R
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D
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R

S

D
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d d !d 
0 

Storing 
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R

S

D

C

Q+

Qœ

R

S

D

C

d !d q 

!q 

!q 

q 0 

0 

12-04-2011 CART - Aalborg University 39 



Registers 

n  Stores word of data 
n  Different from program registers seen in assembly code 

n  Collection of edge-triggered latches 
n  Loads input on rising edge of clock 
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Structure 



Clock Synchronization 

n  Register operations are synchronized. 
n  Stores data bits. 
n  For most of time acts as barrier between input and 

output. 
n  As clock rises, loads input. 
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x" y"

State = x"
Rising"
clock"_ _ 

Output = x"Input = y"

State = y"

Output = y"
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Register File 
n  Set of program registers. 

n  Local and fast access storage. 
n  Small. 
n  Fixed size (machine word). 
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Memory 
n  Abstract & simplified model. 
n  Simple array of byte, no hierarchy. 

n  We’ll see later the hierarchy & virtual memory 
system. 



Micro/Macro-code 
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Complement 
n  We’ll focus on gate/logic design. 

n  = simplified model. 

n  Reality is more complex. 
n  Design is at a higher level. 
n  We’ll see hints of correspondence to micro-code. 
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Microcode 
n  How to implement complex CPU? 

n  Program the complex instructions. 
n  Visible machine language = macro instruction 

set. 
n  Internal language = micro-code. 
n  Microcontroller inside CPUs that decode and 

execute macro-instructions. 
n  RISC 
n  Processors are all RISCs in the end. 

n  Key: Easier to write programs with micro-code 
than to build hardware from scratch. 
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Microcode 
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Data and Register Sizes 
n  Size of visible register may differ from 

size of internal registers. 
n  Ex: Could implement 32-bit instruction set on a 

16-bit microcontroller. 
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Advantages/Drawbacks 
n  Advantages 

n  Can change microcode and keep the same 
macro-instruction set! 

n  Less prone to errors, can be updated more easily. 

n  Drawback 
n  Cost in performance – overhead. 
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Vertical Microcode 
n  Simple view of microcontroller ~ standard 

processor. 
n  Execution of micro-code like assembly. 
n  One micro-instruction at a time. 
n  Access to different units. 
n  Decode each macro-instruction and execute 

micro-code. 
n  Easy to read/write, bad performance. 
n  Not the case in practice. 
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Horizontal Microcode 
n  Use implicit parallelism.  

n  Utilize units in parallel when possible. 

n  Control data movements and the different 
hardware units at the same time. 

n  Very difficult to program. 
n  Long instruction: 

|exec op1 unit1|exec op2 unit2|transfer this 
register there|… 
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Example Architecture 
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Horizontal Microcode 
n  Not like conventional programs. 
n  Each instruction takes one cycle 

n  but not all operations take one cycle 
n  special care for timing, wait for units that need 

more cycles 

continue 
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Intelligent Microcontroller 
n  Schedules instructions & units. 
n  Handles operations in parallel. 
n  Performs branch prediction. 

n  May try 2 paths and discard the results of the 
wrong one later. 

n  Important: Keep the sequential semantics. 

n  Out-of-order execution 
n  use scoreboard to keep track of results and 

dependencies 
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Conclusion 
n  Does it matter? 

n  Yes! Understand your hardware and its 
technology. 

n  Use it in a better way. Reduce branches, or make 
them easy to guess. 
Ex: 
for(i =0, j = n-1; i < j; ++i,--j) swap(&a[i],&a[j]) 
harder than 
for(i = 0; i < n/2; ++i) swap(&a[i],&a[n-1-i]) 


