
Processor Architecture I

Alexandre David

12-04-2011 CART - Aalborg University 2

Overview
n  Introduction: from transistors to gates.

n  and from gates to circuits.

n  4.1
n  4.2
n  Micro+macro code.

12-04-2011 CART - Aalborg University 3

Evolution of Computers
n  Early systems

n  CPU (central processing unit) controlled the
entire system

n  Responsible for I/O, computations, …

n  Modern computers
n  Decentralized architecture
n  Processors distributed (I/O)
n  CPU still controls other processors

12-04-2011 CART - Aalborg University 4

General Purpose CPU
n  Very complex because

n  designed for wide variety of tasks – multiple roles
n  contains special purpose sub-units
n  ex: core i7 has 731M transistors
n  supports protection and privileges (OS/applic.)
n  supports priorities (I/O)
n  data size (32/64-bit registers)
n  high speed – parallelism = replication

12-04-2011 CART - Aalborg University 5

CPU Visible State
n  Visible for ISA, used by compiler (&

assembler) – there may be other registers
etc… that depend on the CPU generation.

n  Registers (classify them), condition codes,
status & memory.

n  Memory=array of bytes (abstraction).

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

RF: Program registers"

ZF SF OF

CC:
Condition

codes"

PC"

DMEM: Memory"

Stat: Program Status"

12-04-2011 CART - Aalborg University 6

ISA
n  Classify:

n  load/store
n  r/i/m operands
n  arithmetics
n  jumps
n  (cmov)
n  call/return
n  stack

n  Encoding:
n  opcode+

operands

Byte! 0 1 2 3 4 5

pushl rA" A 0 rA" F

jXX Dest" 7 fn" Dest"

popl rA" B 0 rA" F

call Dest" 8 0 Dest"

rrmovl rA, rB" 2 0 rA" rB"

irmovl V, rB" 3 0 F rB" V"

rmmovl rA,D(rB) 4 0 rA" rB" D"

mrmovl D(rB),rA" 5 0 rA" rB" D"

OPl rA, rB" 6 fn" rA" rB"

ret 9 0

halt 0 0

nop 1 0

cmovXX rA, rB" 2 fn" rA" rB"

12-04-2011 CART - Aalborg University 7

ISA – Notes
n  No memory → memory transfer.
n  No imm → memory transfer (x86 can do it).
n  Restricted operators (add, sub, and, xor).

n  Only register – register operands.
n  Typical of load/store architectures (also RISC).

n  Conditional jumps depend on combinations of
flags.
n  Similar for conditional move.

n  Call, ret, pop, and push implicitly modify the
stack (& stack pointer).

12-04-2011 CART - Aalborg University 8

Encoding
n  1 byte encoding = code + function.

n  Unique combination for every instruction.

n  Register operands have a unique identifier.
n  eax:0, ecx:1,… none:F
n  “none” important for design

addl 6 0

subl 6 1

andl 6 2

xorl 6 3

jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

Operations! Branches!

rrmovl 2 0

cmovle 2 1

cmovl 2 2

cmove 2 3

cmovne 2 4

cmovge 2 5

cmovg 2 6

Moves!

PP4.1
PP4.2

12-04-2011 CART - Aalborg University 9

Status Code
n  State of the processor

n  AOK normal
n  HLT halted
n  ADR invalid address
n  INS invalid instruction

12-04-2011 CART - Aalborg University 10

Y86 – X86
n  Y86 simplified model for X86.
n  Code is similar, except for

n  move instructions
n  restrictions

n  → may need more instructions
n  not important, we abstract from that.
n  Reason on Y86 level, exercise with both

(simulator Y86, gcc for X86).

12-04-2011 CART - Aalborg University 11

Y86 Assembly
n  Instructions as described with registers.
n  Assembly directives.

n  Where to put the code (.pos).
n  Align the code (.align).
n  Declare data (.long).
n  X86 has more.

n  Label declarations (used for jump offsets).
n  Assembled into bytes.
n  Y86 interpret the bytes.

PP4.3

12-04-2011 CART - Aalborg University 12

Logic Design
n  How to implement the hardware to recognize

the instruction codes.
n  Logic that

n  reads bytes,
n  interprets bytes (switch),
n  performs operations,
n  updates state.

n  Transistors → gates → functions & blocks.
n  Processor design at block level.

12-04-2011 CART - Aalborg University 13

Background
n  Voltage: difference of potentials.

n  Vcc – ground (=0).
n  Volts (V)

n  Current: flow of electrons.
n  Amperes (A)

n  Ohm’s law: U = RI
n  Dissipated power: P = UI = U2/R

12-04-2011 CART - Aalborg University 14

Typical Chips
n  Operate on low voltage (5V, less for

processors) – see power dissipation.
n  Always 2 lines

n  ground (0V)
n  power (5V)

n  Diagrams usually omit ground and power.

12-04-2011 CART - Aalborg University 15

Transistor Basic building
block of digital
circuits

Acts like a switch.
emitter

base

collector

12-04-2011 CART - Aalborg University 16

How Are They Made?

sand

pure silicon
with perfect
crystalline structure

slice into wafers

photo-lithography

doping materials (N/P)
metal (copper/gold)

cut

connect &
package

12-04-2011 CART - Aalborg University 17

Boolean Algebra
n  Mathematical basis for digital circuits.
n  From boolean functions to gates.
n  Basic functions: and, or, not.
n  In practice, cheaper to have nand & nor.

12-04-2011 CART - Aalborg University 18

Example: Not

12-04-2011 CART - Aalborg University 19

Gates
n  Primitive boolean functions.
n  Level of abstraction on integrated circuits.

Symbols used in circuits.

12-04-2011 CART - Aalborg University 20

Logic Gate Technology
n  Transistor-transistor technology (TTL)

n  connect directly gates together to form boolean
functions

and function

12-04-2011 CART - Aalborg University 21

Design of Functions
n  Find a boolean expression that does what

you need
n  and feed it to a tool that optimizes it to minimize

the number of gates.

n  Come up with the truth table of your function
n  which is converted to a boolean function.

12-04-2011 CART - Aalborg University 22

Truth Table

12-04-2011 CART - Aalborg University 23

Combinatorial Circuits

n  Outputs = function(inputs)
n  change outputs only when inputs changes
n  need states to perform sequences of operations

without sustained inputs
n  maintain states
n  use a clock

12-04-2011 CART - Aalborg University 24

Practical Concerns
n  Power

n  consumption: how to feed
n  dissipation P=CFV2 (C: capacitance, F: frequency)

how not to burn

n  Timing – gates need time to settle.
n  Clock synchronization.

n  Update upon rise or fall of clock signal.

12-04-2011 CART - Aalborg University 25

Clock Skew

Signals need time to propagate.
Local clocks are used on larger
systems → need to synchronize
them.
The speed of light is too slow.

12-04-2011 CART - Aalborg University 26

Logic Design & HCL
n  Design logic with gates – but not one by one

and not manually!
n  Use an adapted language for that. Here HCL

(hardware control language) for educational
purposes.

n  C-like language to express boolean formulas.
n  Combinatorial circuits built out of these formulas.
n  Acyclic network of gates: signal propagates from

inputs to outputs → boolean functions.

12-04-2011 CART - Aalborg University 27

Example
n  bool eq = (a && b) || (!a && !b);

PP4.8

Bit equal"a"

b"

eq"

12-04-2011 CART - Aalborg University 28

Multiplexor
n  Function: choose an input signal depending

on a selection signal.
bool out = (s && a) || (!s && b);
n  Select results, functions, etc…

PP4.9

Bit MUX"

b"

s"

a"
out"

12-04-2011 CART - Aalborg University 29

Word-Level Combinatorial Circuits

n  Operations defined at word level (~integers).
n  Treat groups of bits together.
n  Define functions at word-level.

12-04-2011 CART - Aalborg University 30

Example: Equality Test
n  bool Eq = (A == B);

b31"
Bit equal"

a31"

eq31"

b30"
Bit equal"

a30"

eq30"

b1"
Bit equal"

a1"

eq1"

b0"
Bit equal"

a0"

eq0"

Eq"

A). Bit-level implementation! B). Word-level abstraction!

="
B"

A"

A = B"

12-04-2011 CART - Aalborg University 31

Multiplexor At Word-Level

b31"

s"

a31"

out31"

b30"

a30"

out30"

b0"

a0"

out0"

B"

A"
Out"

int Out = [
 s : A;
 1 : B;
];

s"

A). Bit-level implementation! B). Word-level abstraction!

MUX"

12-04-2011 CART - Aalborg University 32

Use: Select
n  int Out4 = [
 !s1 && !s0 : A; # 00
 !s1 : B; # 01
 !s0 : C; # 10
 1 : D; # 11
]

n  Simplified select.

PP4.10

D"

A"
Out4"

s0"
s1"

MUX4"B"
C"

12-04-2011 CART - Aalborg University 33

ALU
n  2 operand inputs + 1 control input.

n  Operands X and Y.
n  Control selects operation.
n  Same principle as select, we abstract from the

exact design.

A"
L"
U"

Y"

X"

X + Y"

0"

A"
L"
U"

Y"

X"

X - Y"

1"

A"
L"
U"

Y"

X"

X & Y"

2"

A"
L"
U"

Y"

X"

X ^ Y"

3"

A"

B"

A"

B"

A"

B"

A"

B"

12-04-2011 CART - Aalborg University 34

Memory & Clocking
n  Memory stores states.

n  Functions only propagates signals.
n  Memory implemented as flip-flop-like circuits.

Have feedback loops to “keep” bits.
n  Registers (hardware or program).

n  Clocks synchronize when to update.
n  Between updates, signals propagate.
n  Clock signal rises → registers are updated.

V1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1

Storing 1 Bit
Bistable Element

Vin V1

V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

Q+

Q–

q

!q

q = 0 or 1

12-04-2011 CART - Aalborg University 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin
V2

Storing 1 Bit (cont.)
Bistable Element

Stable 0

Stable 1

Metastable

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

12-04-2011 CART - Aalborg University 36

Physical Analogy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin
V2

Stable 0

Stable 1

Metastable

Stable left Stable right .

Metastable

12-04-2011 CART - Aalborg University 37

Storing and Accessing 1 Bit

Q+

Qœ

R

S

Q+

Qœ

R

S

Resetting
1

0

1 0

0 1

Q+

Qœ

R

S

Q+

Qœ

R

S

Setting
0

1

0 1

1 0

Q+

Qœ

R

S

Q+

Qœ

R

S

Storing
0

0

!q q

q !q

Q+

Q–

R

S

R-S Latch
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

12-04-2011 CART - Aalborg University 38

1-Bit Latch
D Latch

Q+

Q–

R

S

D

C

Data

Clock

Latching

1

Q+

Qœ

R

S

D

C

Q+

Qœ

R

S

D

C

d !d !d !d d

d d !d
0

Storing

Q+

Qœ

R

S

D

C

Q+

Qœ

R

S

D

C

d !d q

!q

!q

q 0

0

12-04-2011 CART - Aalborg University 39

Registers

n  Stores word of data
n  Different from program registers seen in assembly code

n  Collection of edge-triggered latches
n  Loads input on rising edge of clock

12-04-2011 CART - Aalborg University 40

I O

Clock

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7

i6

i5

i4

i3

i2

i1

i0

o7

o6

o5

o4

o3

o2

o1

o0

Clock

Structure

Clock Synchronization

n  Register operations are synchronized.
n  Stores data bits.
n  For most of time acts as barrier between input and

output.
n  As clock rises, loads input.

12-04-2011 CART - Aalborg University 41

x" y"

State = x"
Rising"
clock"_ _

Output = x"Input = y"

State = y"

Output = y"

12-04-2011 CART - Aalborg University 42

Register File
n  Set of program registers.

n  Local and fast access storage.
n  Small.
n  Fixed size (machine word).

12-04-2011 CART - Aalborg University 43

Memory
n  Abstract & simplified model.
n  Simple array of byte, no hierarchy.

n  We’ll see later the hierarchy & virtual memory
system.

Micro/Macro-code

12-04-2011 CART - Aalborg University 45

Complement
n  We’ll focus on gate/logic design.

n  = simplified model.

n  Reality is more complex.
n  Design is at a higher level.
n  We’ll see hints of correspondence to micro-code.

12-04-2011 CART - Aalborg University 46

Microcode
n  How to implement complex CPU?

n  Program the complex instructions.
n  Visible machine language = macro instruction

set.
n  Internal language = micro-code.
n  Microcontroller inside CPUs that decode and

execute macro-instructions.
n  RISC
n  Processors are all RISCs in the end.

n  Key: Easier to write programs with micro-code
than to build hardware from scratch.

12-04-2011 CART - Aalborg University 47

Microcode

12-04-2011 CART - Aalborg University 48

Data and Register Sizes
n  Size of visible register may differ from

size of internal registers.
n  Ex: Could implement 32-bit instruction set on a

16-bit microcontroller.

12-04-2011 CART - Aalborg University 49

Advantages/Drawbacks
n  Advantages

n  Can change microcode and keep the same
macro-instruction set!

n  Less prone to errors, can be updated more easily.

n  Drawback
n  Cost in performance – overhead.

12-04-2011 CART - Aalborg University 50

Vertical Microcode
n  Simple view of microcontroller ~ standard

processor.
n  Execution of micro-code like assembly.
n  One micro-instruction at a time.
n  Access to different units.
n  Decode each macro-instruction and execute

micro-code.
n  Easy to read/write, bad performance.
n  Not the case in practice.

12-04-2011 CART - Aalborg University 51

Horizontal Microcode
n  Use implicit parallelism.

n  Utilize units in parallel when possible.

n  Control data movements and the different
hardware units at the same time.

n  Very difficult to program.
n  Long instruction:

|exec op1 unit1|exec op2 unit2|transfer this
register there|…

12-04-2011 CART - Aalborg University 52

Example Architecture

12-04-2011 CART - Aalborg University 53

12-04-2011 CART - Aalborg University 54

Horizontal Microcode
n  Not like conventional programs.
n  Each instruction takes one cycle

n  but not all operations take one cycle
n  special care for timing, wait for units that need

more cycles

continue

12-04-2011 CART - Aalborg University 55

Intelligent Microcontroller
n  Schedules instructions & units.
n  Handles operations in parallel.
n  Performs branch prediction.

n  May try 2 paths and discard the results of the
wrong one later.

n  Important: Keep the sequential semantics.

n  Out-of-order execution
n  use scoreboard to keep track of results and

dependencies

12-04-2011 CART - Aalborg University 56

Conclusion
n  Does it matter?

n  Yes! Understand your hardware and its
technology.

n  Use it in a better way. Reduce branches, or make
them easy to guess.
Ex:
for(i =0, j = n-1; i < j; ++i,--j) swap(&a[i],&a[j])
harder than
for(i = 0; i < n/2; ++i) swap(&a[i],&a[n-1-i])

