Course Introduction and Overview

Lecture 1, Feb. 10, 2011
Alexandre David

Credits to Randy Bryant & Dave O’Hallaron
from Carnegie Mellon

Overview

m Lectures

m Course theme

m Five realities

m How the course fits into the CS/ECE curriculum
m Logistics

Lectures

m 3x 30 min, short break in-between
" 1x summary or quiz

= 2x topic of the day

m Readings
= “blue” self-reading, only summarized
= “green” treated in lectures
= part of syllabus for the exam
= “red”: if you can

Theme:
Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
= Need to understand details of underlying implementations

m Useful outcomes
" Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
" Prepare for later “systems” classes in CS

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1: Is x> = 0?

" Float’s: Yes!

" |nt’s:

wﬂ;ﬂ; 42
A A A

-

e 306 ... 1,307, ..

BAAA

5D
/‘Fm

AN A A

-

“.32J767.-.‘32,759..,
Bann BARRA Baa
2

<o

. =32,767...-32,766 ...

5

=5

= 40000 * 40000 - 1600000000
= 50000 * 50000 = ?7?

m Example 2:Is (x +y)+z = x+(y +2)?
" Unsigned & Signed Int’s: Yes!

" Float’s:

= (1e20 +-1e20) +3.14-->3.14
= 1e20+(-1e20 + 3.14) --> ??

Source: xkcd.com/571 5

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user dest, int maxlen) {

/* Byte count len 1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find vulnerabilities
in programs

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from _kernel(void *user _dest, int maxlen) {

/* Byte count len 1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_Trom_kernel(mybuf, MSIZE);
printf(*“%s\n””, mybuf);

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/> Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user _dest, int maxlen) {

/* Byte count len 1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff(Q) {
char mybuf[MSIZE];
copy_Tfrom_kernel(mybuf, -MSIZE);

Computer Arithmetic

m Does not generate random values

= Arithmetic operations have important mathematical properties

I (] I”

m Cannot assume al mathematical properties

® Due to finiteness of representations

usua

" |nteger operations satisfy “ring” properties
= Commutativity, associativity, distributivity

" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation
" Need to understand which abstractions apply in which contexts
" Important issues for compiler writers and serious application programmers

Great Reality #2:
You've Got to Know Assembly

m Chances are, you’ll never write programs in assembly

® Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level execution
model
= Behavior of programs in presence of bugs
= High-level language models break down
®= Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
" Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state

Creating / fighting malware
= x86 assembly is the language of choice!

Assembly Code Example

m Time Stamp Counter

= Special 64-bit register in Intel-compatible machines
" Incremented every clock cycle
= Read with rdtsc instruction

m Application

= Measure time (in clock cycles) required by procedure

double t;
start_counter();
PO;

t = get _counter();
printf("'P required %f clock cycles\n", t);

11

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility

m Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi
static unsigned cyc lo

0;
0;

/* Set *hi1i and *lo to the high and low order bits
of the cycle counter.

*/

voild access _counter(unsigned *hi, unsigned *10)

{

asm(*'rdtsc; movl %%edx,%0; movl %%eax,%l"
"=r (*hi), "=r" (*lo)

o ""ledx', ""%eax');

12

asm

m You can embed/inline assembly in C with gcc or cl.
= Csyntax is compiler dependent, here we use gcc.
= ASM syntax is also compiler dependent, here AT&T style, gcc.

asm(''rdtsc; movl %%edx,%0; movl %%eax,%l"
ll:rll (*hi), Il:rll (*IO)

"hedx", ""%eax');

}

= asm: special statement, can be “asm volatile”.
® string: assembly instructions ‘;” separated.
= : outputs : inputs : clobber list — interface to the compiler.

13

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
" |t must be allocated and managed
= Many applications are memory dominated
m Memory referencing bugs especially pernicious

= Effects are distant in both time and space

m Memory performance is not uniform
= Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

14

Memory Referencing Bug Example

double fun(int 1)
{
volatile double d[1] = {3.14};
volatile long iInt aJ2];
a[i1] = 1073741824 ; /* Possibly out of bounds */
return d[O];

+

fun(0) - 3.14

fun(l) - 3.14

fun(2) - 3.1399998664856

fun(3) - 2.00000061035156

fun(4) - 3.14, then segmentation fault

m Result is architecture specific

15

Memory Referencing Bug Example

double fun(int 1)
{
volatile double d[1] = {3.14};
volatile long iInt aJ2];
a[i1] = 1073741824 ; /* Possibly out of bounds */
return d[O];

+

fun(0) - 3.14

fun(l) - 3.14

fun(2) - 3.1399998664856

fun(3) - 2.00000061035156

fun(4) - 3.14, then segmentation fault

Explanation: |Saved State)
d7 ... d4
d3 ... do Location accessed by

fun(i)
a[1]

a[0]

O P, DD W B~

16

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby or ML

= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

17

Memory System Performance Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])

{ {

int ij; int ij;

for (i = 0; i < 2048; i++) for (j = 0; j < 2048; j++)

for (j = 0; j < 2048; j++) =< for (i=0;i<2048; i++)
dst[i][j] = srcfi][il; dst[i][j] = srcfi][i;

} }

21 times slower
m Hierarchical memory organization (Pe ntium 4)

m Performance depends on access patterns

" |ncluding how step through multi-dimensional array

The Memory Mountain 267 o
32 KB L1 d-cache

256 KB L2 cache

7000 — L1 8 MB L3 cache
COlej

6000

5000

4000

L2
3000

Read throughput (MB/s)

2000 L3

1000
copyJji

31
s3
s5
s7
2K

Mem

s9
s11
s13
1M
128K
16K

stride (x8 bytes)

8M

Size (bytes)

s15

32

64M

Exercise

Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

20

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

sa000
— d — —
— S
37500 Best code (K. Goto)
25000
12500
Triple loop
0 = T ¥ f .
o 2.250 4.500 6.7%0 3.000
matrix sze

m Standard desktop computer, vendor compiler, using optimization flags
m Both implementations have exactly the same operations count (2n3)
m What is going on?

21

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50000
37500
Multiple threads: 4x

25000
12500

B Vector instructions: 4x

0 " N — Memory hlera'rchy and other optimizations: 20x N
0 2,250 4,800 4,760

matrix size
m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,

instruction scheduling, search to find best choice
m Effect: fewer register spills, L1/L2 cache misses, and TLB misses

22

Great Reality #5:
Computers do more than execute

programs
m They need to get data in and out
= |/O system critical to program reliability and performance

m They communicate with each other over networks

= Many system-level issues arise in presence of network

Concurrent operations by autonomous processes

Coping with unreliable media

Cross platform compatibility

Complex performance issues

m Course book covers these topics
" This course focuses on computer architecture.
" You will need the rest later.

23

Where does it fit?

m Imperative programming C
m CART

Data representation, memory model
— database
— compilers

(Network)
— distributed systems

Process & memory management
— OS (PSS)
— embedded systems

Machine code

— compiler

Arithmetics Foundation of Computer Systems
—> algorithms Underlying principles for hardware,
Execution model software, and networking

— embedded systems

24

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
® Operating Systems
= Implement large portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols

25

Course Perspective (Cont.)

m Our Course is Programmer-Centric

® Purpose is to show how by knowing more about the underlying system,
one can be more effective as a programmer

= Enable you to
= Write programs that are more reliable and efficient
= Incorporate features that require hooks into OS
— E.g., concurrency, signal handlers
= Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone
= Cover material in this course that you won’t see elsewhere

26

Course Book

m Randal E. Bryant and David R. O’Hallaron,

= “Computer Systems: A Programmer’s Perspective,
Second Edition” (CS:APP2e), Prentice Hall, 2011

" http://csapp.cs.cmu.edu

Computer Systems = This book really matters for the course!

& FROOGRAMEER'S FIRAPECTIVE

e e = Practice problems typical of exam problems

Anndal E. Bryam = Dsvid AL Ordaleon

= Great help whenever needed on C as well.
= Asides

27

Welcome
and Enjoy!

