!'_ String Matching

Alexandre David
B2-206

The Problem

= Glven a text 7 and a patter A, find an
occurrence of Pinside 7 or return rno
match.

= /Is of size ¢, Pis of size p.
= Example:

iNaTve Solution

= ComparePto T
starting at position 1.

« If mismatch, move P to
the right and try again.

= If match, return current
position.
= Worst-case: (t-p+1)*p
comparisons, that is

O((t-p)*p). 1T p=0(1)
then we have O(t*p).

naive_find(T,P):
p = length(P)
t = length(T)
for i=0to t-p do
ok = true
for j=1topdo
if P[j]!= T[i+j] then
ok = false
break
fi
done
if ok then return i+l
done
return -1

Example

17-11-06 AAl

iSqution With Finite Automata

= Glven A, It Is possible to construct a finite
automaton that is used to scan 7in O(%).

s ldea: Remember the last matched sub-
string and re-use the information.

= Matching = reach the state *.
No match = get stuck Iin the automaton.

= Pre-processing required: Construct the
automaton in O(p*/alphabet/).

iExample With Automaton

festses..

0w
0|0

17-11-06

iExample With Automaton

|[..... 5 End of string,
AC stuck in the

i1 mmg e

0w
0|0

17-11-06

iKnuth—I\/Iorris—Pratt Flowchart

= Glven A, It Is possible to construct a finite
flowchart that is used to scan 7in O(t+p).

= ldea Is to remember the maximum of
matchable characters before the it

position.

= Matching = reach the state *.
No match = get stuck Iin the automaton.

= Pre-processing: Construct the flowchart in

ow).

iExampIe With Flowchart

Read and test S: success, read, test

A]B]A]B]C /\character 7 £ fail, test

10

= -
c §
< o
@) SIESINIE
L @m0)
O <
._m m 85
= |2, [F<>
DIOIM |mmim:
Q| o< [Oad<ig s
E |oos (<<
O | 2 <9 |o<o <
X o5 [of<g=a
E, O <o

Boyer-Moore Algorithm

17-11-06

= |ldea Is to skip text without checking It.
Scan from right to left, use heuristics to
decide how far to jump.

o Average running time O(t/p), worst O(t*p).

11

iRabin—Karp Algorithm

= Use a hash function to identify equal
strings! Very powerful for multi-pattern
matching.

= Trick: Use a special hash function. Treat
the character as a number in some base
(usually a big prime) and compute the
next hash iteratively.
Hopefully, we have few collisions.

= Average running time O(t), worst O(t*p).

12

iRabin-Karp Algorithm

= Hash update = “shift” in the corresponding
base.

= In practice, useful to use base 256 for
characters and a prime as the hash table
size.

= Very fast and hash performs reasonably well.

13

iExample With Rabin-Karp

Updates of hash O(1) + tests O(1)... Test O(1) — yes.
Test P O(p) — yes.

17-11-06 AAl 14

