
String Matching

Alexandre David
B2-206

17-11-06 AA1 2

The Problem
Given a text T and a patter P, find an
occurrence of P inside T or return no
match.
T is of size t, P is of size p.
Example:

A B A B C
A B A B C C AACACB B T

P

17-11-06 AA1 3

Naïve Solution
Compare P to T
starting at position 1.

If mismatch, move P to
the right and try again.
If match, return current
position.

Worst-case: (t-p+1)*p
comparisons, that is
O((t-p)*p). If p=O(t)
then we have O(t*p).

naïve_find(T,P):
p = length(P)
t = length(T)
for i = 0 to t-p do
ok = true
for j = 1 to p do
if P[j] != T[i+j] then
ok = false
break

fi
done
if ok then return i+1

done
return -1

17-11-06 AA1 4

A B A B C

Example

A B A B C
A B A B C C AACACB B

A B A B C
A B A B C

A B A B C
A B A B C

A B A B C

i: offset from 0 to t-p

j: index for testing from
1 to p

17-11-06 AA1 5

Solution With Finite Automata
Given P, it is possible to construct a finite
automaton that is used to scan T in O(t).
Idea: Remember the last matched sub-
string and re-use the information.
Matching = reach the state *.
No match = get stuck in the automaton.
Pre-processing required: Construct the
automaton in O(p*|alphabet|).

17-11-06 AA1 6

Example With Automaton

A B A B C

1 2 3 4 5 *start

B,C

A

C A

B

B,C C

A

A

B C

A

B

A B A B C C AACACB B
1

1

1

1

1

2

2

1

1

2

2

3

3

4

4

5

5

4

4

5

5

* Match!

17-11-06 AA1 7

Example With Automaton

A B A B C

1 2 3 4 5 *start

B,C

A

C A

B

B,C C

A

A

B C

A

B

A B A B C C AACACB B
1

1

1

1

1

2

2

1

1

2

2

3

3

4

4

5

5

4

4

5

5

4

End of string,
stuck in the
automaton
⇒ No match!

A
4

1

1

2

17-11-06 AA1 8

Knuth-Morris-Pratt Flowchart
Given P, it is possible to construct a finite
flowchart that is used to scan T in O(t+p).
Idea is to remember the maximum of
matchable characters before the ith
position.
Matching = reach the state *.
No match = get stuck in the automaton.
Pre-processing: Construct the flowchart in
O(p2).

17-11-06 AA1 9

Example With Flowchart

A B A B C

A B A B C *Get next
char.

s s s s s

s: success, read, test
f: fail, test

f f ff

f0 1 2 4 5 63 Indices

Construct next table (f): A B A B C
0 1 1 2 3

-

Read and test
character.

17-11-06 AA1 10

Example With Flowchart

A B A B C
0 1 1 2 3

*

A B A B C C AACACB B

3 4 5 3 5
*

120
0

2

401
1

1

3 4 51 20
n

n
A

n
0
A

1
n

A B

A

n

A B A B C

A

B C

6

6
Match!

17-11-06 AA1 11

Boyer-Moore Algorithm
Idea is to skip text without checking it.
Scan from right to left, use heuristics to
decide how far to jump.
Average running time O(t/p), worst O(t*p).

A B A B C
B E B C A B ADCACB A B C C A

A B A B C
A B A B C

A B A B C
A B A B C

D E

D not in P ⇒

E not in P ⇒

Match!

17-11-06 AA1 12

Rabin-Karp Algorithm
Use a hash function to identify equal
strings! Very powerful for multi-pattern
matching.
Trick: Use a special hash function. Treat
the character as a number in some base
(usually a big prime) and compute the
next hash iteratively.
Hopefully, we have few collisions.
Average running time O(t), worst O(t*p).

17-11-06 AA1 13

Rabin-Karp Algorithm
Hash update = “shift” in the corresponding
base.
In practice, useful to use base 256 for
characters and a prime as the hash table
size.

Very fast and hash performs reasonably well.

17-11-06 AA1 14

Example With Rabin-Karp

A B A B C

A B A B C C AACACB B

hashp O(p).

Initial hash O(p). Test O(1) → no.

A B A B C C AACACB B

Update hash O(1). Test O(1) → no.

A B A B C C AACACB B
Updates of hash O(1) + tests O(1)… Test O(1) → yes.

Test P O(p) → yes.

