String Matching

Alexandre David
B2-206

The Problem

- Given a text T and a patter P, find an occurrence of P inside T or return no match.
- Tis of size t, P is of size p.
- Example:

$$
\begin{array}{|l|l|l|l|l|l|l}
\hline A & B & A & B & C & \\
\hline B & P & A & C & A & B & A \\
\hline
\end{array}
$$

Naïve Solution

- Compare P to T starting at position 1.
- If mismatch, move P to the right and try again.
- If match, return current position.
- Worst-case: (t-p+1)*p comparisons, that is $\mathrm{O}\left((\mathrm{t}-\mathrm{p})^{*} \mathrm{p}\right)$. If $\mathrm{p}=\mathrm{O}(\mathrm{t})$ then we have $O\left(t_{A N}^{*} p\right)$.

```
naïve_find(T,P):
p = length(P)
t= length(T)
for i=0 to t-p do
    ok = true
    for j=1 to p do
        if P[j]!= T[i+j] then
        ok = false
        break
        fi
        done
    if ok then return i+1
done
return -1
```


Example

Solution With Finite Automata

- Given P, it is possible to construct a finite automaton that is used to scan T in $O(t)$.
- Idea: Remember the last matched substring and re-use the information.
- Matching = reach the state *. No match $=$ get stuck in the automaton.
- Pre-processing required: Construct the automaton in $O\left(p^{*} / a / p h a b e t /\right)$.

Example With Automaton

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline B & C & A & C & A & B & A & B & A & B & C & C & A \\
\hline
\end{array} \\
& \text { (1) (1) (1) (2) (2) (3) (4) (4) } 5 \\
& \text { (1) (1) (2) (2) (3) (4) (4) (5) * Match! }
\end{aligned}
$$

Example With Automaton

$$
A B A B C
$$

B	C	A	C	A				B	A	B				stuck in the
(1) 1) (1) (2) (1) (2) (3) (4) 5 (4) (5) (4) 1														tomaton
(1) (1) (2) (1) (2) (3) (4) 55) (4) (5) (4) (1) (2)														No mat

Knuth-Morris-Pratt Flowchart

- Given P, it is possible to construct a finite flowchart that is used to scan T in $O(t+p)$.
- Idea is to remember the maximum of matchable characters before the $\mathrm{i}^{\text {th }}$ position.
- Matching $=$ reach the state * No match $=$ get stuck in the automaton.
- Pre-processing: Construct the flowchart in $O\left(p^{2}\right)$.

Example With Flowchart

Construct next table (f):

$$
\begin{array}{|l|l|l|l|}
\hline A & B & A & B \\
C & - \\
0 & 1 & 1 & 2
\end{array}
$$

Example With Flowchart

0	1	2	3	4	5
n	6				
0	B	A	B	C	$*$
0	1	1	2	3	

	B	C	A	C	A	B	A	B	A	B	C	C	A
0	A	A	A	B	A	B	A	B	C	B	C	Match!	
n	0	0	, 2	1)	2	3	4	5	3	5	6		
1	n	n		A					A		*		
	1	1		0					4				
				n									
				1									

Boyer-Moore Algorithm

- Idea is to skip text without checking it. Scan from right to left, use heuristics to decide how far to jump.
- Average running time $O(t / p)$, worst $O\left(t^{*} p\right)$.

Rabin-Karp Algorithm

- Use a hash function to identify equal strings! Very powerful for multi-pattern matching.
- Trick: Use a special hash function. Treat the character as a number in some base (usually a big prime) and compute the next hash iteratively. Hopefully, we have few collisions.
- Average running time $O(t)$, worst $O\left(t^{*} p\right)$.

Rabin-Karp Algorithm

- Hash update = "shift" in the corresponding base.
- In practice, useful to use base 256 for characters and a prime as the hash table size.
- Very fast and hash performs reasonably well.

Example With Rabin-Karp

$A]$ B A B C \longrightarrow hash $_{p} O(p)$.
B C C A
Initial hash $O(p)$. Test $O(1) \rightarrow$ no.

Update hash $O(1)$. Test $O(1) \rightarrow$ no.

Updates of hash $O(1)+$ tests $O(1) \ldots$ Test $O(1) \rightarrow$ yes.
Test $\mathrm{P} O(p) \rightarrow$ yes.

