
Searching

Alexandre David
B2-206

14-11-06 AA1 2

The Problem
Your system is a given state and you want
it to reach another state.

You have a set of rules that tell you how the
system may evolve.
You don’t know how to get to the target state
trivially.

General problem, typically in the field of
planning and AI.
Classification: Graph algorithm.

14-11-06 AA1 3

Definitions
A state is the snapshot configuration of a system,
typically a tuple with the values of all the
variables of the system.
The system changes state by taking transitions.
The rules are given by a transition relation.
The set of all states is called the state-space.
A state S is reachable if there exists a sequence
of transitions from the initial state to S.

The sequence of transition is called trace, path, or
witness, depending on the field.

14-11-06 AA1 4

Searching, a.k.a. State-space
Exploration

Is the target
state reachable?
If yes, how?

14-11-06 AA1 5

Exploration Algorithm
search(init,target):
S={(init,white)}
while {(a,white) | (a,white) ∈ S} ≠ ∅ do

pick (a,white) ∈ S
if a ~ target then return true
S = S[(a,black)/(a,white)]
forall a → a’ do

if {(b,color) | b ~ a’} = ∅ then
S = S ∪ (a’,white)

fi
done

done
return false

white = not
explored yet.
black = explored.
~ = equivalence
relation.
→ = transition.

14-11-06 AA1 6

Correctness
The algorithm explores all possible
reachable states.

It will terminate if the state-space is finite.
This is often the case, you can argue that.
When it terminates, it proves that a state is
reachable or not.
You can add simple information to keep track
of predecessors to generate a trace.

14-11-06 AA1 7

Technicalities
How to represent S?

Hash table.
Compute a hash on a canonical representant
of the equivalence class of your state.

How to pick-up the next state to be
explored?

FIFO: Breadth-first-search.
LIFO: Depth-first search.
Priority queue: Guided search with heuristics.

14-11-06 AA1 8

Search Orderings

Breadth-first-search
(BFS)

1

2 3 4

5 6 7 8 9

10 11 12 13 14

Depth-first-search
(DFS)

1

2

3

4 5

6

7

8

9

10

11

12

13

14

Gives shortest
path but may
be more expensive
than heuristics or
random search.

14-11-06 AA1 9

Application to Your Project
Given a chess-board with pieces on it, move a
piece from a position to another.

All the pieces may move by 1 in any direction if the
target position is empty.
Not trivial to get a simple algorithm “guess” the
solution, but this is an instance of a more general
search problem.

The initial state is given by the initial
configuration of the board.
The final state is given by the configuration of
the board with the piece moved to the wanted
position.

14-11-06 AA1 10

Formalizing the Problem
The state is a board (array) B[8][8] of
pieces.
2 states B and B’ are said equivalent
(noted B~B’) iff ∀i,j : B[i][j] = B’[i][j].

You can try to code the fact that we don’t care
about the nature of the pieces, except for the
initial and final states, which is the problem

Transition relation:

[]]][[/],']['[/
1'1',]']['[,]][[

jiBjiBaBB
jjxoriijiBjiBa

⊥⎯→⎯
±=±==⊥≠⊥=

14-11-06 AA1 11

Practice
Hash table for S.
Write a function to generate the successor states
(transition relation).
The successor states are looked-up in S.
Have a queue (FIFO,LIFO,priority) to keep
references to the “white” states.
BIG PROBLEM: State-space explosion, so use a
heuristic to guide the search.

⊥, P, Bishop, Knight, Rook, Knight, Queen, on any
8x8: 764 states.

Extension of the transition relation: Allow
diagonal moves.

