Computing Polynomials

Alexandre David
B2-206

The Problem

- How to compute efficiently polynomials of the form

$$
\sum_{i=0}^{n} a_{i} x^{i}
$$

- Naïve approach: Compute each term and sum-up. If naïve power algorithm is used: $n(n+1) / 2$ multiplications $+n$ additions.
- Better? ?

Idea

- Rewrite the polynomial as:
$\sum_{i=0}^{n} a_{i} x^{i}=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots x\left(a_{n}\right) \ldots\right)\right)$
$=$ Compute " a " as: \quad Hormer's rule
$a=a_{n}$
$a=a_{n-1}+x^{\star} a$
$a=a_{1}+x^{*} a$
$a=a_{0}+x^{\star} a$

Algorithm

$$
\begin{aligned}
& a=a i[n] \\
& \text { while }(n>0) \text { do } \\
& \qquad n=n-1 \\
& \quad a=a i[n]+x^{\star} a \\
& \text { done } \\
& \text { return } a
\end{aligned}
$$

Notes:

- Efficient if most ai[n] are not null.
- Not necessary the best precision.
- Optimized for some DSPs that have a multiply and accumulate instruction.

