Shortest Path Algorithm

Alexandre David
B2-206

Menu

- Introduction to graphs, definitions.
- Finding a path.
- Shortest-path problem \& algorithm.
- Bellman-Ford.
- Dijkstra.

Graphs - Definition

- A graph is a pair (V, E)
- V finite set of vertices.
- E finite set of edges. $e \in E$ is a pair (u, v) of vertices. Ordered pair \rightarrow directed graph. Unordered pair \rightarrow undirected graph.

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs - Edges

- Directed graph:
- $(u, v) \in E$ is incident from u and incident to v.
- $(u, v) \in E$: vertex v is adjacent to u.
- Undirected graph:
- $(u, v) \in E$ is incident on u and v.
- $(u, v) \in E$: vertices u and v are adjacent to each other.

Graphs - Paths

- A path is a sequence of adjacent vertices.
- Length of a path = number of edges.
- Path from v to $u \Rightarrow u$ is reachable from v.
- Simple path: All vertices are distinct.
- A path is a cycle if its starting and ending vertices are the same.
- Simple cycle: All intermediate vertices are distinct.

Simple path:
Simple cycle:
Non simple cycle:

(a)

Simple path:
Simple cycle:
Non simple cycle:

(b)

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs

- Connected graph: \exists path between any pair.
- $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ sub-graph of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ if $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ and $\mathrm{E}^{\prime} \subseteq \mathrm{E}$.
- Sub-graph of G induced by V': Take all edges of E connecting vertices of $\mathrm{V}^{\prime} \subseteq \mathrm{V}$.
- Complete graph: Each pair of vertices adjacent.
- Tree: connected acyclic graph.

Sub-graph:

Induced sub-graph:

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graph Representation

- Sparse graph (|E| much smaller than $|\mathrm{V}|^{2}$):
- Adjacency list representation.
- Dense graph:
- Adjacency matrix.
- For weighted graphs (V,E,w): weighted adjacency list/matrix.

$$
\begin{aligned}
a_{i, j} & =\left\{\begin{array}{l}
1 \\
\text { if }\left(v_{i}, v_{j}\right) \in E \\
0 \\
\text { otherwise }
\end{array}\right. \\
\mathrm{A} & =\left[\begin{array}{lllll}
{\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \downarrow}
\end{array}\right)
\end{aligned}
$$

$$
|\mathrm{V}|^{2} \text { entries }
$$

Figure 10.2 An undirected graph and its adjacency matrix representation.
Undirected graph \Rightarrow symmetric adjacency matrix.

$|\mathrm{V}|+|\mathrm{E}|$ entries

Figure 10.3 An undirected graph and its adjacency list representation.

```
DFS_find(G,s,t,S):
if \(s \in S\) then
        return false
fi
push(S,s)
if \(s=\dagger\) then
return true
fi
forall \(s \rightarrow s^{\prime}\) do
if DFS_find \(\left(G, s^{\prime}, t, S\right)\) then
        return true
fi
done
pop(s)
return false
```


Shortest Path Problem

- Given a weighted directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with weight function $w: E \rightarrow \mathbf{R}$, the weight of a path $\mathrm{p}=\left\langle\mathrm{v}_{0} \ldots \mathrm{v}_{\mathrm{k}}\right\rangle$ is defined by

$$
w(p)=\sum_{i=0}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- The shortest-path weight from u to v is defined by $\delta(u, v)=\min \{w(p)$:there is a path from u to $v\}$, ∞ otherwise.
- A shortest path from vextex u to vextex v is then defined by any path with weight $w(p)=\delta(u, v)$.

Variants

- Single-source shortest-paths: from a source to every vertex.
- Single-destination shortest-paths: from every vertex to a destination.
- Single-pair shortest path: between a pair of vertices u and v.
- All-pairs shortest-paths: for all pairs of vertices.

Optimal Sub-structure of Shortest Paths

- Shortest-paths algorithm rely on the property that a shortest path between 2 vertices contains other shortest paths within it.
- Lemma: Let $\mathrm{p}=\left\langle\mathrm{v}_{0} . . \mathrm{v}_{\mathrm{k}}\right\rangle$ be a shortest path from v_{0} to v_{k}. For any $i, j 0 \leq i \leq j \leq k$, $p_{i j}=\left\langle v_{i} \ldots v_{j}\right\rangle$ is a shortest path from v_{i} to v_{j}.
- Proof technique: Suppose it is not the case and obtain a contradiction with the hypothesis.

Negative Weight Cycles

- Pose problems to define shortest-paths.
- We suppose we do not have negative weight cycles otherwise the shortest-path is not well-defined.
- Stay in the cycle and get $-\infty$ as the sum.
- Other cycles can be removed without loss of generality (if weight=0, otherwise not shortest).

Representation

- We want to compute shortest-path weights and the vertices on the path. For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- $\pi(\mathrm{v})$ is a predecessor of $\mathrm{V} \in \mathrm{V}$, or NIL.
- π values induce the predecessor sub-graph

$$
\begin{aligned}
& \mathrm{G}_{\pi}=\left(\mathrm{V}_{\pi}, \mathrm{E}_{\pi}\right) . \\
& \mathrm{V}_{\pi}=\{\mathrm{V} \in \mathrm{~V}: \pi(\mathrm{v}) \neq \mathrm{NIL}\} \cup\{\mathrm{s}\} .(+ \text { source } \mathrm{s}) \\
& \mathrm{E}_{\pi}=\left\{(\pi(\mathrm{v}), \mathrm{v}) \in \mathrm{E}: \mathrm{V} \in \mathrm{~V}_{\pi}-\{\mathrm{x}\}\right\} .
\end{aligned}
$$

- The shortest-path algorithm computes π and the result is a "shortest-path tree".

Tightening - Relaxation

(Historical Reasons)

- Attribute $\mathrm{d}(\mathrm{v})$ is the current known shortest path weight to v, i.e., it's an upper-bound on the shortest path weight.

```
Initialize_single_source( \(G, s\) ):
forall \(v \in V(G)\) do
    \(d(v)=\infty\)
    \(\pi(\mathrm{v})=\mathrm{NIL}\)
done
\(d(s)=0\)
```

```
Relax ( \(u, v, w)\) :
if \(d(v)>d(u)+w(u, v)\) then
    \(d(v)=d(u)+w(u, v)\)
    \(\pi(v)=u\)
fi
```


1 Tightening

Shorter to v via u: $d(u)+w(u, v)<d(v)$.

Single-Source Shortest-Paths Algorithms

- Bellman-Ford.
- General case with negative weights.
- Detect if negative weight cycles are reachable.
- Dijkstra.
- Requires positive weights.

Bellman-Ford

Repeat \qquad
Relax all pairs of edges.

O(|V|*|E|)

Upon termination, either

- the algorithm converged to the shortest path,
- or there is a negative cycle and it didn't converge.

```
Bellman_Ford(G,w,s):
Initialize_single_source(G,s)
for i = 1 to |V(G)|-1 do
    forall (u,v) E E(G) do
        Relax(u,v,w)
        done
done
forall (u,v) \inE(G) do
    if d(v)>d(u)+w(u,v) then
        return false
    fi
done
return true
```


Example

Example

Example

Example

If 1 here, then
we have a negative cycle!

Special Case: Directed Acyclic Graphs

- Specialized algorithm: One pass over vertices in topologically sorted order.

```
DAG_shortest_path(G,w,s):
Initialize_single_source(G,s)
forall u\inV in topological order do
    forall v adjacent to u do
        Relax(u,v,w)
    done
done
```


Example

Dijkstra's Algorithm For non-negative weights

- Maintains a set S of vertices with known shortest paths.
- Select $u \in V-S$ with minimum estimate.
- Add u to S.
- Relax edges leaving u.

Dijkstra's Algorithm

```
Dijkstra(G,w,s):
Initialize_single_source( \(G, s\) )
\(S=\varnothing\)
\(Q=V(G)\) priority queue keyed by \(d\)
while \(Q \neq \varnothing\) do
\(u=\) get_min( \(Q\) )
\(S=S \cup\{u\}\)
forall vadajacent to \(u\) do
    Relax(u,v,w)
    done
done
```


Example

Dijkstra's Algorithm

- Efficiency: Depends on the priority queue. Can be $O((V+E) \lg V)$.
- Implementation:
- Array d[] for "distance" from the source.
- Array I[] for "last" vertex.
- The priority queue.

