
Shortest Path Algorithm

Alexandre David
B2-206

17-11-06 AA1 2

Menu
Introduction to graphs, definitions.
Finding a path.
Shortest-path problem & algorithm.

Bellman-Ford.
Dijkstra.

17-11-06 AA1 3

Graphs – Definition
A graph is a pair (V,E)

V finite set of vertices.
E finite set of edges.
e ∈ E is a pair (u,v) of vertices.
Ordered pair → directed graph.
Unordered pair → undirected graph.

17-11-06 AA1 4

edge

vertex

V=
E=

V=
E=

17-11-06 AA1 5

Graphs – Edges
Directed graph:

(u,v) ∈ E is incident from u and incident to v.
(u,v) ∈ E : vertex v is adjacent to u.

Undirected graph:
(u,v) ∈ E is incident on u and v.
(u,v) ∈ E : vertices u and v are adjacent to
each other.

17-11-06 AA1 6

Graphs – Paths
A path is a sequence of adjacent vertices.

Length of a path = number of edges.
Path from v to u ⇒ u is reachable from v.
Simple path: All vertices are distinct.
A path is a cycle if its starting and ending
vertices are the same.
Simple cycle: All intermediate vertices are
distinct.

17-11-06 AA1 7

Simple path:
Simple cycle:
Non simple cycle:

Simple path:
Simple cycle:
Non simple cycle:

17-11-06 AA1 8

Graphs
Connected graph: ∃ path between any
pair.
G’=(V’,E’) sub-graph of G=(V,E) if V’⊆V
and E’⊆E.
Sub-graph of G induced by V’: Take all
edges of E connecting vertices of V’⊆V.
Complete graph: Each pair of vertices
adjacent.
Tree: connected acyclic graph.

17-11-06 AA1 9

Sub-graph:
Induced sub-graph:

17-11-06 AA1 10

Graph Representation
Sparse graph (|E| much smaller than |V|2):

Adjacency list representation.

Dense graph:
Adjacency matrix.

For weighted graphs (V,E,w): weighted
adjacency list/matrix.

17-11-06 AA1 11

⎩
⎨
⎧ ∈

=
otherwise

Evvif
a ji

ji 0

),(1
,

Undirected graph ⇒ symmetric adjacency matrix.

|V|

|V|2 entries

17-11-06 AA1 12

|V|

|V|+|E| entries

17-11-06 AA1 13

Finding a Path
Straight-forward
DFS or BFS
algorithm.
Specialized DFS
version. (Call with
S=∅).

DFS_find(G,s,t,S):
if s ∈ S then

return false
fi
push(S,s)
if s = t then

return true
fi
forall s → s’ do

if DFS_find(G,s’,t,S) then
return true

fi
done
pop(s)
return false

17-11-06 AA1 14

Shortest Path Problem
Given a weighted directed graph G=(V,E) with
weight function w : E→R, the weight of a path
p=〈v0…vk〉 is defined by

The shortest-path weight from u to v is defined
by δ(u,v)=min{w(p):there is a path from u to v},
∞ otherwise.
A shortest path from vextex u to vextex v is then
defined by any path with weight w(p)=δ(u,v).

∑
=

−=
k

i
ii vvwpw

0
1),()(

17-11-06 AA1 15

Variants
Single-source shortest-paths: from a
source to every vertex.
Single-destination shortest-paths: from
every vertex to a destination.
Single-pair shortest path: between a pair
of vertices u and v.
All-pairs shortest-paths: for all pairs of
vertices.

17-11-06 AA1 16

Optimal Sub-structure of
Shortest Paths
Shortest-paths algorithm rely on the
property that a shortest path between 2
vertices contains other shortest paths
within it.
Lemma: Let p=〈v0…vk〉 be a shortest path
from v0 to vk. For any i,j 0≤i≤j≤k,
pij=〈vi…vj〉 is a shortest path from vi to vj.

Proof technique: Suppose it is not the case
and obtain a contradiction with the hypothesis.

17-11-06 AA1 17

Negative Weight Cycles
Pose problems to define shortest-paths.
We suppose we do not have negative
weight cycles otherwise the shortest-path
is not well-defined.

Stay in the cycle and get -∞ as the sum.

Other cycles can be removed without loss
of generality (if weight=0, otherwise not
shortest).

17-11-06 AA1 18

Representation
We want to compute shortest-path weights
and the vertices on the path. For a graph
G=(V,E)

π(v) is a predecessor of v ∈ V, or NIL.
π values induce the predecessor sub-graph
Gπ=(Vπ,Eπ).
Vπ={v ∈ V : π(v) ≠ NIL}∪{s}. (+ source s)
Eπ={(π(v),v) ∈ E : v ∈ Vπ-{x}}.
The shortest-path algorithm computes π and
the result is a ”shortest-path tree”.

17-11-06 AA1 19

Tightening – Relaxation
(Historical Reasons)
Attribute d(v) is the current known
shortest path weight to v, i.e., it’s an
upper-bound on the shortest path weight.

Initialize_single_source(G,s):
forall v ∈ V(G) do

d(v) = ∞
π(v) = NIL

done
d(s) = 0

Relax(u,v,w):
if d(v) > d(u)+w(u,v) then

d(v) = d(u)+w(u,v)
π(v) = u

fi

17-11-06 AA1 20

Tightening

u v

s

d(u)=5 d(v)=9

w(u,v)=2

Shorter to v via u:
d(u)+w(u,v) < d(v).

u v

s

d(u)=5 d(v)=7

π(v)=u

17-11-06 AA1 21

Single-Source Shortest-Paths
Algorithms
Bellman-Ford.

General case with negative weights.
Detect if negative weight cycles are reachable.

Dijkstra.
Requires positive weights.

17-11-06 AA1 22

Bellman-Ford
Bellman_Ford(G,w,s):
Initialize_single_source(G,s)
for i = 1 to |V(G)|-1 do

forall (u,v) ∈ E(G) do
Relax(u,v,w)

done
done
forall (u,v) ∈ E(G) do

if d(v) > d(u)+w(u,v) then
return false

fi
done
return true

Repeat

Relax all pairs
of edges.

Upon termination, either
• the algorithm converged
to the shortest path,

• or there is a negative
cycle and it didn’t converge.

O(|V|*|E|)

17-11-06 AA1 23

Example

0

∞

∞

∞

∞

s

6

5
-2

8
7

2

-3

-4

9

7 0

6

7

∞

∞

s

6

5
-2

8
7

2

-3

-4

9

7

17-11-06 AA1 24

Example

0

6

7

∞

∞

s

6

5
-2

8
7

2

-3

-4

9

7 0

6

7

4

2

s

6

5
-2

8
7

2

-3

-4

9

7

17-11-06 AA1 25

Example

0

6

7

4

2

s

6

5
-2

8
7

2

-3

-4

9

7 0

2

7

4

2

s

6

5
-2

8
7

2

-3

-4

9

7

17-11-06 AA1 26

Example

0

2

7

4

2

s

6

5
-2

8
7

2

-3

-4

9

7 0

2

7

4

-2

s

6

5
-2

8
7

2

-3

-4

9

7

If 1 here, then
we have a negative cycle!

17-11-06 AA1 27

Special Case: Directed Acyclic
Graphs
Specialized algorithm: One pass over
vertices in topologically sorted order.

DAG_shortest_path(G,w,s):
Initialize_single_source(G,s)
forall u ∈ V in topological order do

forall v adjacent to u do
Relax(u,v,w)

done
done

17-11-06 AA1 28

Example

∞ 0 ∞ ∞ ∞ ∞
s

5 2

6 1

-1 -2

243
∞ 0 2 6

∞ 0 2 6 ∞ ∞
s

5 2

6 1

-1 -2

243
2 6 4

∞ 0 2 6 6 4
s

5 2

6 1

-1 -2

243
6 5 4

17-11-06 AA1 29

Example

∞ 0 2 6 5 4
s

5 2

6 1

-1 -2

243
5 3

∞ 0 2 6 5 3
s

5 2

6 1

-1 -2

243
3

17-11-06 AA1 30

Dijkstra’s Algorithm
For non-negative weights

Maintains a set S of vertices with known
shortest paths.

Select u ∈ V-S with minimum estimate.
Add u to S.
Relax edges leaving u.

17-11-06 AA1 31

Dijkstra’s Algorithm

Dijkstra(G,w,s):
Initialize_single_source(G,s)
S = ∅
Q = V(G) priority queue keyed by d
while Q ≠ ∅ do

u = get_min(Q)
S = S∪{u}
forall v adajacent to u do

Relax(u,v,w)
done

done

17-11-06 AA1 32

Example

0

∞

∞

∞

∞

s

10

3

1

2
5

7

9

2

64

Q

Min(Q) (removed)

S

10

5

0

10

5

∞

∞

s

10

3

1

2
5

7

9

2

640

8 14

75

17-11-06 AA1 33

Example

0

8

5

14

7

s

10

3

1

2
5

7

9

2

64 0

8

5

13

7

s

10

3

1

2
5

7

9

2

64

7

13 8 99

17-11-06 AA1 34

Dijkstra’s Algorithm
Efficiency: Depends on the priority queue.
Can be O((V+E) lgV).
Implementation:

Array d[] for “distance” from the source.
Array l[] for “last” vertex.
The priority queue.

