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Graphs – Definition
A graph is a pair (V,E )

V finite set of vertices.
E finite set of edges.
e ∈ E is a pair (u,v ) of vertices.
Ordered pair → directed graph.
Unordered pair → undirected graph.
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Graphs – Edges
Directed graph:

(u,v ) ∈ E is incident from u and incident to v.
(u,v ) ∈ E : vertex v is adjacent to u.

Undirected graph:
(u,v ) ∈ E is incident on u and v.
(u,v ) ∈ E : vertices u and v are adjacent to 
each other.
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Graphs – Paths
A path is a sequence of adjacent vertices.

Length of a path = number of edges.
Path from v to u ⇒ u is reachable from v.
Simple path: All vertices are distinct.
A path is a cycle if its starting and ending 
vertices are the same.
Simple cycle: All intermediate vertices are 
distinct.
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Simple path:
Simple cycle:
Non simple cycle:

Simple path:
Simple cycle:
Non simple cycle:
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Graphs
Connected graph: ∃ path between any 
pair.
G’=(V’,E’) sub-graph of G=(V,E) if V’⊆V 
and E’⊆E.
Sub-graph of G induced by V’: Take all 
edges of E connecting vertices of V’⊆V.
Complete graph: Each pair of vertices 
adjacent.
Tree: connected acyclic graph.
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Sub-graph:
Induced sub-graph:
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Graph Representation
Sparse graph (|E| much smaller than |V|2):

Adjacency list representation.

Dense graph:
Adjacency matrix.

For weighted graphs (V,E,w): weighted 
adjacency list/matrix.
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|V|
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Finding a Path
Straight-forward 
DFS or BFS 
algorithm.
Specialized DFS 
version. (Call with 
S=∅).

DFS_find(G,s,t,S):
if s ∈ S then

return false
fi
push(S,s)
if s = t then

return true
fi
forall s → s’ do

if DFS_find(G,s’,t,S) then
return true

fi
done
pop(s)
return false
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Shortest Path Problem
Given a weighted directed graph G=(V,E) with 
weight function w : E→R, the weight of a path
p=〈v0…vk〉 is defined by

The shortest-path weight from u to v is defined 
by δ(u,v)=min{w(p):there is a path from u to v}, 
∞ otherwise.
A shortest path from vextex u to vextex v is then 
defined by any path with weight w(p)=δ(u,v).
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Variants
Single-source shortest-paths: from a 
source to every vertex.
Single-destination shortest-paths: from 
every vertex to a destination.
Single-pair shortest path: between a pair 
of vertices u and v.
All-pairs shortest-paths: for all pairs of 
vertices.



17-11-06 AA1 16

Optimal Sub-structure of 
Shortest Paths
Shortest-paths algorithm rely on the 
property that a shortest path between 2 
vertices contains other shortest paths 
within it.
Lemma: Let p=〈v0…vk〉 be a shortest path 
from v0 to vk. For any i,j 0≤i≤j≤k, 
pij=〈vi…vj〉 is a shortest path from vi to vj.

Proof technique: Suppose it is not the case 
and obtain a contradiction with the hypothesis.
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Negative Weight Cycles
Pose problems to define shortest-paths.
We suppose we do not have negative 
weight cycles otherwise the shortest-path 
is not well-defined.

Stay in the cycle and get -∞ as the sum.

Other cycles can be removed without loss 
of generality (if weight=0, otherwise not 
shortest).
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Representation
We want to compute shortest-path weights 
and the vertices on the path. For a graph 
G=(V,E)

π(v) is a predecessor of v ∈ V, or NIL.
π values induce the predecessor sub-graph
Gπ=(Vπ,Eπ).
Vπ={v ∈ V : π(v) ≠ NIL}∪{s}. (+ source s)
Eπ={(π(v),v) ∈ E : v ∈ Vπ-{x}}.
The shortest-path algorithm computes π and 
the result is a ”shortest-path tree”.
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Tightening – Relaxation 
(Historical Reasons)
Attribute d(v) is the current known 
shortest path weight to v, i.e., it’s an 
upper-bound on the shortest path weight.

Initialize_single_source(G,s):
forall v ∈ V(G) do

d(v) = ∞
π(v) = NIL

done
d(s) = 0

Relax(u,v,w):
if d(v) > d(u)+w(u,v) then

d(v) = d(u)+w(u,v)
π(v) = u

fi
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Tightening

u v

s

d(u)=5 d(v)=9

w(u,v)=2

Shorter to v via u:
d(u)+w(u,v) < d(v).

u v

s

d(u)=5 d(v)=7

π(v)=u
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Single-Source Shortest-Paths 
Algorithms
Bellman-Ford.

General case with negative weights.
Detect if negative weight cycles are reachable.

Dijkstra.
Requires positive weights.
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Bellman-Ford
Bellman_Ford(G,w,s):
Initialize_single_source(G,s)
for i = 1 to |V(G)|-1 do

forall (u,v) ∈ E(G) do
Relax(u,v,w)

done
done
forall (u,v) ∈ E(G) do

if d(v) > d(u)+w(u,v) then
return false

fi
done
return true

Repeat

Relax all pairs
of edges.

Upon termination, either
• the algorithm converged
to the shortest path,

• or there is a negative
cycle and it didn’t converge.

O(|V|*|E|)
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Special Case: Directed Acyclic 
Graphs
Specialized algorithm: One pass over 
vertices in topologically sorted order.

DAG_shortest_path(G,w,s):
Initialize_single_source(G,s)
forall u ∈ V in topological order do

forall v adjacent to u do
Relax(u,v,w)

done
done
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Dijkstra’s Algorithm
For non-negative weights

Maintains a set S of vertices with known 
shortest paths.

Select u ∈ V-S with minimum estimate.
Add u to S.
Relax edges leaving u.
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Dijkstra’s Algorithm

Dijkstra(G,w,s):
Initialize_single_source(G,s)
S = ∅
Q = V(G) priority queue keyed by d
while Q ≠ ∅ do

u = get_min(Q)
S = S∪{u}
forall v adajacent to u do

Relax(u,v,w)
done

done
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Dijkstra’s Algorithm
Efficiency: Depends on the priority queue. 
Can be O((V+E) lgV).
Implementation:

Array d[] for “distance” from the source.
Array l[] for “last” vertex.
The priority queue.


