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Graphs — Definition

= A graph is a pair (V£)
« V finite set of vertices.
« £ finite set of edges.
e ¢ £ is a pair (u,v) of vertices.
Ordered pair — directed graph.
Unordered pair — undirected graph.
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(a) An undirected graph and (b) a directed graph.



Graphs — Edges

= Directed graph:
= (4,v) e E isincident from v and incident to v.
« (U,v) e E: vertex vis adjacent to v.

= Undirected graph:

=« (4,v) e E isincident on vand v.

« (4,v) e E: vertices vand vare adjacent to
each other.



iGraphs — Paths

= A path is a sequence of adjacent vertices.
= Length of a path = number of edges.
« Path from vto v = wvis reachable from v.
« Simple path: All vertices are distinct.

= A path is a cycle if its starting and ending
vertices are the same.

= Simple cycle: All intermediate vertices are
distinct.



Simple path: Simple path:
Simple cycle: Simple cycle:
Non simple cycle: Non simple cycle:
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Figure 10.1 (a) An undirected graph and (b) a directed graph.



Graphs

= Connected graph: 3 path between any
pair.

s G'=(V',E) sub-graph of G=(V,E) if V'cV
and E'cE.

= Sub-graph of G induced by V': Take all
edges of E connecting vertices of V'cV.

= Complete graph: Each pair of vertices
adjacent.

= [ree: connected acyclic graph.



Sub-graph:
Induced sub-graph:

(a) (b)
Figure 10.1 (a) An undirected graph and (b) a directed graph.



Graph Representation

= Sparse graph (|E| much smaller than |V|?):
= Adjacency list representation.

= Dense graph:
= Adjacency matrix.

= For weighted graphs (V,E,w): weighted
adjacency list/matrix.
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1 if (v,v;)eE

0 otherwise
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Figure 10.2 An undirected graph and its adjacency matrix representation.

Undirected graph = symmetric adjacency matrix.
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|IV|+|E| entries
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4 > 5
o ° 5 /2 ,:} 4
Y

Figure 10.3  An undirected graph and its adjacency list representation.
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iFinding a Path

= Straight-forward
DFS or BFS
algorithm.

= Specialized DFS
version. (Call with
S=).

DFS_find(G,s,t,S):

if s € S then
return false

fi

push(S,s)

if s =t then
return true

fi

forall s —> s' do
if DFS_find(G,s',1,S) then

return true

fi

done

pop(s)

return false
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Shortest Path Problem

= Given a weighted directed graph G=(V,E) with
weight function w : E—R, the weight of a path
pP=(V,...V,) is defined by y

wW(p) = ZW(Vi—l’Vi)

= The shortest-path weight from u to v is defined
by 8(u,v)=min{w(p):there is a path from u to v},
oo otherwise.

= A shortest path from vextex u to vextex v is then
defined by any path with weight w(p)=4(u,Vv).
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Variants

= Single-source shortest-paths: from a
source to every vertex.

= Single-destination shortest-paths: from
every vertex to a destination.

= Single-pair shortest path: between a pair
of vertices u and v.

= All-pairs shortest-paths: for all pairs of
vertices.
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Optimal Sub-structure of
Shortest Paths

= Shortest-paths algorithm rely on the
property that a shortest path between 2
vertices contains other shortest paths
within It.

s Lemma: Let p=(v,...v,) be a shortest path
from v, to v,. For any i,j 0<i<j=<Kk,
p;=(V;...v;) is a shortest path from v; to v,.

= Proof technique: Suppose it is not the case
and obtain a contradiction with the hypothesis.
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Negative Weight Cycles

= Pose problems to define shortest-paths.

= We suppose we do not have negative
weight cycles otherwise the shortest-path
is not well-defined.

« Stay in the cycle and get -« as the sum.

= Other cycles can be removed without loss
of generality (if weight=0, otherwise not
shortest).
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iRepresentation

= We want to compute shortest-path weights
and the vertices on the path. For a graph
G=(V,E)
= (V) is a predecessor of v € V, or NIL.
= 7t values induce the predecessor sub-graph
G.=(V,E,).
V_={v e V: n(v) # NIL}{s}. (+ source s)
E ={(n(v),v) e E:v e V_-{X}}.
= The shortest-path algorithm computes = and
the result is a “shortest-path tree”.
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Tightening — Relaxation
i(HistoricaI Reasons)

= Attribute d(v) is the current known
shortest path weight to v, i.e., it's an

upper-bound on the shortest path weight.

Initialize_single_source(G,s):
forall v € V(G) do
d(V) = ©
n(v) = NIL
done
d(s)=0

Relax(u,v,w):

if d(v) > d(u)+w(u,v) then
d(v) = d(u)+w(u,v)
n(v) = u

fi
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iTig htening

dW=5  d(v)=9

e

w(u,v)=2

Shorter to v via u:
d(u)+w(u,v) < d(v).
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Single-Source Shortest-Paths
Algorithms

= Bellman-Ford.
= General case with negative weights.
= Detect if negative weight cycles are reachable.

N DIJkStra
= Requires positive weights.
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iBeIIman-Ford

Repeat

Relax all pairs

of edges.

OCIVI*|EI)

Upon termination, either

e the algorithm converged
to the shortest path,

e or there is a negative

cycle and it didn't converge.

Bellman_Ford(G,w,s):
Initialize_single_source(G,s)
fori=11to |V(G)|-1do
forall (u,v) € E(6) do
Relax(u,v,w)
done
done
forall (u,v) € E(G) do
if d(v) > d(u)+w(u,v) then
return false
fi
done
return frue
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If 1 here, then
we have a negative cycle!
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Special Case: Directed Acyclic
Graphs

= Specialized algorithm: One pass over
vertices in topologically sorted order.

DAG_shortest_path(G,w,s):
Initialize_single_source(G,s)
forall u € V in topological order do
forall v adjacent to u do
Relax(u,v,w)
done
done
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Dijkstra’s Algorithm

For non-negative weights

= Maintains a set S of vertices with known
shortest paths.

= Select u € V-S with minimum estimate.
= Add u to S.
= Relax edges leaving u.
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iDijkstra’s Algorithm

Dijkstra(G,w,s):
Initialize_single_source(G,s)
S=¢
Q = V(6G) priority queue keyed by d
while Q = & do

u = get_min(Q)

S = SuU{u}

forall v adajacent to u do

Relax(u,v,w)

done

done
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Dijkstra’s Algorithm

= Efficiency: Depends on the priority queue.
Can be O((V+E)IgV).
= Implementation:
= Array d[] for “distance” from the source.
= Array I[] for “last” vertex.
= The priority queue.
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