Sorting in Linear Time - Solution

Alexandre David

Proof Complement (8.1-2)

Let's prove the upper-bound. This is trivial:

$$
\begin{align*}
\lg (n!) & =\sum_{k=1}^{n} \lg (k) \tag{1}\\
& \leq \sum_{k=1}^{n} \lg (n) \tag{2}\\
& =n \lg (n) \tag{3}
\end{align*}
$$

We conclude $\lg (n!)=O(n \lg (n))$.
Let's prove the lower-bound by using techniques of appendix A.2, which consists in splitting the sum:

$$
\begin{align*}
\lg (n!) & =\sum_{k=1}^{n / 2} \lg (k)+\sum_{k=n / 2+1}^{n} \lg (k) \tag{4}\\
& \geq \sum_{k=n / 2+1}^{n} \lg (n / 2+1) \tag{5}\\
& \geq \sum_{k=n / 2+1}^{n} \lg (n / 2) \tag{6}\\
& =\frac{n}{2} \lg (n / 2) \tag{7}\\
& =\frac{n}{2}(\lg (n)-1) \tag{8}
\end{align*}
$$

Now we need a trick to get rid of $n / 2$. We could try to keep the first sum but that won't help us much. Let's keep "some" of the log only.

$$
\begin{align*}
\lg (n!) & \geq \frac{n}{2}(\lg (n)-1) \tag{9}\\
& =\frac{n}{4} \lg (n)+\frac{n}{2}\left(\frac{\lg (n)}{2}-1\right) \tag{10}\\
& \geq \frac{n}{4} \lg (n) \text { for } n \geq 4 \tag{11}
\end{align*}
$$

We conclude $\lg (n!)=\Omega(n \lg (n))$, which finally gives us $\lg (n!)=\Theta(n \lg (n))$.

