Red-Black Trees

Alexandre David
B2-206
Why?

- Operations on binary search tree in $O(\text{height})$ but
 - this is bad if the height is large.
 - Unbalanced trees give large heights.
 - \Rightarrow Keep trees balanced.

- Red-back trees = binary search trees with a color per node (red/black) that is approximately balanced.

- What is a balanced tree?
Balanced Search Trees

- Balanced search trees: Search-tree data structure for which a height in $O(\lg n)$ is guaranteed when implementing a dynamic set with n items.

- Examples:
 - AVL trees
 - B-trees
 - Red-black trees
 - ...

(chapter 13)
Red-Black Trees

- Binary search trees satisfying red-black properties:
 1. Every node is either red or black.
 2. The root and leaves (NIL) are black.
 3. If a node is red, then its parents are black.
 - Never two reds in a row.
 4. All simple paths from any node \(x \) to a descendant leaf have the same number of black nodes = \(\text{black-height}(x) \).
Example

All NIL have black height 0.
Example – Simplified

Sentinel nil(T).
Example – In Practice

0 Every node is either read or black.
1 The root and leaves (hidden) are black.
2 If a node is red then its parents are black.
3 Black-height property.
4 Height=6 (counting the NIL)
Bound on the height in function of the number of nodes:
- height $\leq 2\lg(n+1)$.
- Because red-black trees are almost balanced.

Proof:
- Sub-trees of x contain at least $2^{bh(x)}-1$ nodes (# of nodes in sub-binary tree, by induction on the height of x).
- $bh(root) \geq h/2$ so $n \geq 2^{h/2}-1 \Rightarrow h \leq 2\lg(n+1)$.
The Point

- Most operations are linear in function of the height.
- The height is bounded in $O(\log n)$.
- Most operations are bounded in $O(\log n)$!

Corollary: The operations search, min, max, successor, and predecessor run in $O(\log n)$ time on a red-black tree with n nodes.
Modifying Operations

- The operations insert and delete modify the red-black tree:
 - insert/delete a node,
 - color changes,
 - + restructure the links of the tree via rotations.

Keep the red-black tree properties!
Rotations

Important property: rotations maintain the in-order ordering of keys \(\Rightarrow \) binary search tree property maintained.

\[\forall a \in \alpha, \forall b \in \beta, \forall c \in \gamma : a \leq A \leq b \leq B \leq c \]
Example – Left-rotate
Insertion

Idea:

- Insert x in the binary search tree.
- Color x red.
- Only red-black property 3 may be violated.
- Move the violation up the tree by re-coloring until it can be fixed by rotations and re-coloring.
Insertion - Example

• Insert $x = 15$.

Problem
• **Insert** \(x = 15 \).
• Recolor, moving the violation up the tree. Black-height unchanged.
Insertion - Example

- Insert $x = 15$.
- Recolor, moving the violation up the tree. Black-height unchanged.
- Right-rotate(18). Black-height unchanged.
Insertion - Example

- Insert $x = 15$.
- Recolor, moving the violation up the tree. Black-height unchanged.
- Right-rotate(18). Black-height unchanged.
- Left-rotate(7) and recolor.
Insertion - Example

- Insert $x = 15$.
- Recolor, moving the violation up the tree. Black-height unchanged.
- Right-rotate(18). Black-height unchanged.
- Left-rotate(7) and recolor.
Algorithm for Insertion

Graphical notations:

- Let denote a sub-tree with a black root.

- All have the same black-height (from the root).
Algorithm for Insertion

- Identify one of 3 possible cases, each describing a pattern for re-coloring or rotation (left or right):
 - Case 1: Recolor and recurse.
 - Case 2: Rotate & transform to case 3.
 - Case 3: Rotate.
Case 1: Recolor

... and recurse.
Case 2: Rotate & case 3.

Left-rotate(A) (or symmetric right-rotate).

... and case 3.
Case 3: Rotate

Right-rotate(C) (or symmetric left-rotate).

Done!
Case 1: Recolor.
Case 2: Rotate.
Case 3: Rotate.
Analysis

- Case 1 can go up the tree.
- Case 2 performs 2 rotations (incl. case 3).
- Case 3 performs 1 rotation.
- Running time: $O(\log n)$ with at most 2 rotations.
Deletion

- Binary search tree deletion of a node + fix the red-black tree.
 - Deletion of a red node is easy – nothing more to do.
 - Deletion of a black node: 4 cases. The node to be deleted has at most one child. Let’s call it x.
 - Note: Deleted node here refers to the node removed from the tree – may be different from the original node we wanted to delete, see binary search tree deletion.
Deletion - Start

Trivial: If x is red, color is black and stop.

Otherwise x is black, mark it double black.
Deletion – Case 1

If x’s sibling is red.

Rotate.

x stays at the same black-height.

Case 2b, B will be colored black.
Deletion – Case 2

(a) If x’s sibling is black and x’s parent is black and...

(b) If x’s sibling is black and x’s parent is red and...

If x == root, BB → B, stop.

Recolor.
Decerease x black-height.

Recolor.
Stop.
Deletion – Case 3

If x’s sibling is black and sibling’s children are red + black.

Rotate & re-color, x stays at the same black-height.

Case 4.
Deletion – Case 4

If x’s sibling is black and sibling’s children are ? + red.

Rotate & re-color.

Stop.
Deletion - Correctness

- We keep the invariant that the tree respects the red-black properties, with special treatment of the black-height (BB counts for 2 B).

- At every step we make progress:
 - Case 1 \rightarrow Case 2b.
 - Case 2a \rightarrow x goes up, recurse \rightarrow will terminate.
 - Case 2b \rightarrow Stop.
 - Case 3 \rightarrow Case 4.
 - Case 4 \rightarrow Stop.

- All configurations are treated.