
Red-Black Trees

Alexandre David
B2-206

14-11-06 AA1 2

Why?
Operations on binary search tree in
O(height) but

this is bad if the height is large.
Unbalanced trees give large heights.
⇒ Keep trees balanced.

Red-back trees = binary search trees with
a color per node (red/black) that is
approximately balanced.
What is a balanced tree??

14-11-06 AA1 3

Balanced Search Trees
Balanced search trees: Search-tree data
structure for which a height in O(lgn) is
guaranteed when implementing a dynamic
set with n item.
Examples:

AVL trees
B-trees
Red-black trees
…

(chapter 13)

14-11-06 AA1 4

Red-Black Trees
Binary search trees satisfying red-black
properties:

Every node is either red or black.
The root and leaves (NIL) are black.
If a node is red, then its parents are black.

Never two reds in a row.

All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).

1

2

3

4

14-11-06 AA1 5

Example
26

17 41

14 21 4730

28 3819 23

20

10

7 12

3

16

15 3935

NIL NIL

NIL NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL NIL

NILNIL

3

23

22

2 1 1 1 1 1

2 1

1 1 1
1

1
1 1

NILAll have black height .0

14-11-06 AA1 6

Example – Simplified
26

17 41

14 21 4730

28 3819 23

20

10

7 12

3

16

15 3935

3

23

22

2 1 1 1 1 1

2 1

1 1 1
1

1
1 1

Sentinel nil(T).

14-11-06 AA1 7

Example – In Practice
26

17 41

14 21 4730

28 3819 23

20

10

7 12

3

16

15 3935

height=6 (counting the NIL)

1 Every node is either read or black.

0 Binary search tree.

2 The root and leaves (hidden) are black.

3 If a node is red then its
parents are black.

4 Black-height property.

3

23

22

2 1 1 1 1 1

2 1

1 1 1
1

1
1 1

14-11-06 AA1 8

Height
Bound on the height in function of the
number of nodes:

height ≤ 2lg(n+1).
Because red-black trees are almost balanced.

Proof:
Sub-trees of x contain at least 2bh(x)-1 nodes
(# of nodes in sub-binary tree, by induction on
the height of x).
bh(root) ≥ h/2 so n≥ 2h/2-1 ⇒ h ≤ 2lg(n+1).

14-11-06 AA1 9

The Point
Most operations are linear in function of
the height.
The height is bounded in O(lgn).
Most operations are bounded in O(lgn) !

Corollary: The operations search, min,
max, successor, and predecessor run in
O(lgn) time on a red-black tree with n
nodes.

14-11-06 AA1 10

Modifying Operations
The operations insert and delete modify
the red-black tree:

insert/delete a node,
color changes,
+ restructure the links of the tree via
rotations.

Keep the red-black tree properties!

14-11-06 AA1 11

Rotations

B

A

α β
γ

B

A

α
β γ

right-rotate(B)

left-rotate(A)

Important property: rotations maintain the in-order
ordering of keys ⇒ binary search tree property maintained.

cBbAacba ≤≤≤≤∈∀∈∀∈∀ :,, γβα

O(1) time.

14-11-06 AA1 12

Example – Left-rotate
7

4 11

63

2

9 18

14 19

12 17 22

20

left-rotate(A)

A

B

7

4

1163

2 9

18

14

19

12 17

22

20

A
B

14-11-06 AA1 13

Insertion
Idea:

Insert x in the binary search tree.
Color x red.
Only red-black property 3 may be violated.
Move the violation up the tree by re-coloring
until it can be fixed by rotations and re-
coloring.

14-11-06 AA1 14

Insertion - Example

• Insert x = 15. 7

3 18

10 22

8 11

15

26

Problem

14-11-06 AA1 15

Insertion - Example

• Insert x = 15.
• Recolor, moving the
violation up the tree.
Black-height unchanged.

7

3 18

10 22

8 11

15

26

10

8 11

Problem

14-11-06 AA1 16

Insertion - Example

• Insert x = 15.
• Recolor, moving the
violation up the tree.
Black-height unchanged.

• Right-rotate(18).
Black-height unchanged.

7

3 18

10 22

8 11

15

26

14-11-06 AA1 17

Insertion - Example

• Insert x = 15.
• Recolor, moving the
violation up the tree.
Black-height unchanged.

• Right-rotate(18).
Black-height unchanged.

• Left-rotate(7) and recolor.

7

3

18

10

22

8

11

15 26

14-11-06 AA1 18

Insertion - Example

• Insert x = 15.
• Recolor, moving the
violation up the tree.
Black-height unchanged.

• Right-rotate(18).
Black-height unchanged.

• Left-rotate(7) and recolor.

7

3

18

10

228 11

15 26

7

10

14-11-06 AA1 19

Algorithm for Insertion
Graphical notations:

Let denote a sub-tree with a black root.

All have the same black-height (from
the root).

14-11-06 AA1 20

Algorithm for Insertion
Identify one of 3 possible cases, each
describing a pattern for re-coloring or
rotation (left or right):

Case 1: Recolor and recurse.
Case 2: Rotate & transform to case 3.
Case 3: Rotate.

14-11-06 AA1 21

Case 1: Recolor

C

A

B

D

C

A

B

D

x

y

x

… and recurse.

14-11-06 AA1 22

Case 2: Rotate & case 3.

C

A

B

C

B

A
x

y

… and case 3.

Left-rotate(A)
(or symmetric
right-rotate). y

x

14-11-06 AA1 23

Case 3: Rotate

C

B

A

y

x

Right-rotate(C)
(or symmetric
left-rotate). B

CA

Done!

14-11-06 AA1 24

Example

11

142

151 7

5 8

4

x

y

Case 1: Recolor.
11

142

151 7

5 8

4

x

14-11-06 AA1 25

Example

11

142

151 7

5 8

4

x
y

Case 2: Rotate.
11

14

2 15

1

7

5

8

4

x

14-11-06 AA1 26

Example

Case 3: Rotate.
11

14

2 15

1

7

5

8

4

x

y
7

14

2

15

1

11

5 8

4

14-11-06 AA1 27

Analysis
Case 1 can go up the tree.
Case 2 performs 2 rotations (incl. case 3).
Case 3 performs 1 rotation.
Running time: O(lgn) with at most 2
rotations.

14-11-06 AA1 28

Deletion
Binary search tree deletion of a node + fix
the red-black tree.

Deletion of a red node is easy – nothing more
to do.
Deletion of a black node: 4 cases.
The node to be deleted has at most one child.
Let’s call it x.
Note: Deleted node here refers to the node
removed from the tree – may be different
from the original node we wanted to delete,
see binary search tree deletion.

14-11-06 AA1 29

Deletion - Start

?

B

Rx

?

Rx

?

Bx

Trivial: If x is red, color is black and stop.

Otherwise x is black, mark it double black.

?

B

Bx

?

BBx

14-11-06 AA1 30

Deletion – Case 1

If x’s sibling is red.

?

BB R

B B

B

A D

C Ex w

?

BB

R

B

B

D

A

B

C

E

x w

Rotate.
x stays at the same

black-height.

Case 2b, B will be colored black.

14-11-06 AA1 31

Deletion – Case 2
(a) If x’s sibling is black and x’s parent is black and…

(b) If x’s sibling is black and x’s parent is red and…

B

BB B

B B

B

A D

C Ex w

BB

B R

B B

B

A D

C E

x
Recolor.

Decrease x black-height.

R

BB B

B B

B

A D

C Ex w

Recolor.
Stop.

B

B R

B B

B

A D

C E

If x == root,
BB → B, stop.

14-11-06 AA1 32

Deletion – Case 3
If x’s sibling is black and sibling’s children are red + black.

?

BB B

R B

B

A D

C Ex w

Rotate & re-color,
x stays at the same

black-height.
?

BB B

B

R

B

A

D

C

E

x w

Case 4.

14-11-06 AA1 33

Deletion – Case 4
If x’s sibling is black and sibling’s children are ? + red.

?

BB B

? R

B

A D

C Ex w

Rotate & re-color.
Stop.

?

BB

B ?

D

EB

A C

14-11-06 AA1 34

Deletion - Correctness
We keep the invariant that the tree respects the
red-black properties, with special treatment of
the black-height (BB counts for 2 B).
At every step we make progress:

Case 1 → Case 2b.
Case 2a → x goes up, recurse → will terminate.
Case 2b → Stop.
Case 3 → Case 4.
Case 4 → Stop.

All configurations are treated.

