

#### Alexandre David B2-206

# Why?

- Operations on binary search tree in O(height) but
  - this is bad if the height is large.
  - Unbalanced trees give large heights.
  - $\Rightarrow$  Keep trees balanced.
- Red-back trees = binary search trees with a color per node (red/black) that is approximately balanced.



What is a balanced tree?

## Balanced Search Trees

- Balanced search trees: Search-tree data structure for which a height in O( lgn) is guaranteed when implementing a dynamic set with n item.
- Examples:
  - AVL trees
- (chapter 13)
- B-trees
- Red-black trees

## **Red-Black Trees**

- Binary search trees satisfying red-black properties:
- **1** Every node is either red or black.
- 2 The root and leaves (NIL) are black.
- If a node is red, then its parents are black.
  Never two reds in a row.
- All simple paths from any node x to a descendant leaf have the same number of black nodes = black-height(x).



#### Example – Simplified





# Height

- Bound on the height in function of the number of nodes:
  - height  $\leq 2 \lg(n+1)$ .
  - Because red-black trees are almost balanced.
- Proof:
  - Sub-trees of x contain at least 2<sup>bh(x)</sup>-1 nodes (# of nodes in sub-binary tree, by induction on the height of x).
  - bh(root)  $\geq$  h/2 so n $\geq$  2<sup>h/2</sup>-1  $\Rightarrow$  h  $\leq$  2lg(n+1).

# The Point

- Most operations are linear in function of the height.
- The height is bounded in O( lg n).
- Most operations are bounded in O(lgn)!
- Corollary: The operations search, min, max, successor, and predecessor run in O( lgn) time on a red-black tree with n nodes.

# Modifying Operations

- The operations insert and delete modify the red-black tree:
  - insert/delete a node,
  - color changes,
  - + restructure the links of the tree via rotations.

Keep the red-black tree properties!



Important property: rotations maintain the in-order ordering of keys  $\Rightarrow$  binary search tree property maintained.  $\forall a \in \alpha, \forall b \in \beta, \forall c \in \gamma : a \leq A \leq b \leq B \leq c$ 14-11-06



# Insertion

- Idea:
  - Insert x in the binary search tree.
  - Color x red.
  - Only red-black property 3 may be violated.
  - Move the violation up the tree by re-coloring until it can be fixed by rotations and recoloring.







- Insert x = 15.
- Recolor, moving the violation up the tree.
   Black-height unchanged.



- Insert x = 15.
- Recolor, moving the violation up the tree.
   Black-height unchanged.
- Right-rotate(18). Black-height unchanged.



- Insert x = 15.
- Recolor, moving the violation up the tree.
   Black-height unchanged.
- Right-rotate(18). Black-height unchanged.
- Left-rotate(7) and recolor.



- Insert x = 15.
- Recolor, moving the violation up the tree.
   Black-height unchanged.
- Right-rotate(18).
  Black-height unchanged.



• Left-rotate(7) and recolor.

## Algorithm for Insertion

Graphical notations:

• Let denote a sub-tree with a black root.

# All have the same black-height (from the root).

## Algorithm for Insertion

- Identify one of 3 possible cases, each describing a pattern for re-coloring or rotation (left or right):
  - Case 1: Recolor and recurse.
  - Case 2: Rotate & transform to case 3.
  - Case 3: Rotate.

# Case 1: Recolor



#### ... and recurse.



... and case 3.









# Analysis

- Case 1 can go up the tree.
- Case 2 performs 2 rotations (incl. case 3).
- Case 3 performs 1 rotation.
- Running time: O(lgn) with at most 2 rotations.

# Deletion

- Binary search tree deletion of a node + fix the red-black tree.
  - Deletion of a red node is easy nothing more to do.
  - Deletion of a black node: 4 cases.
    The node to be deleted has at most one child.
    Let's call it x.
  - Note: Deleted node here refers to the node removed from the tree – may be different from the original node we wanted to delete, see binary search tree deletion.



Deletion – Case 1

If x's sibling is red.



Case 2b, B will be colored black.



#### Deletion – Case 3

If x's sibling is black and sibling's children are red + black.



#### Deletion – Case 4

If x's sibling is black and sibling's children are ? + red.



#### **Deletion - Correctness**

- We keep the invariant that the tree respects the red-black properties, with special treatment of the black-height (BB counts for 2 B).
- At every step we make progress:
  - Case  $1 \rightarrow$  Case 2b.
  - Case  $2a \rightarrow x$  goes up, recurse  $\rightarrow$  will terminate.
  - Case  $2b \rightarrow Stop$ .
  - Case  $3 \rightarrow$  Case 4.
  - Case  $4 \rightarrow$  Stop.
- All configurations are treated.