Red-Black Trees

Alexandre David
B2-206

Why?

- Operations on binary search tree in O(height) but
- this is bad if the height is large.
- Unbalanced trees give large heights.
- \Rightarrow Keep trees balanced.
- Red-back trees = binary search trees with a color per node (red/black) that is approximately balanced.
? - What is a balanced tree?

Balanced Search Trees

- Balanced search trees: Search-tree data structure for which a height in $O(\lg n)$ is guaranteed when implementing a dynamic set with n item.
- Examples:
- AVL trees
- B-trees
- Red-black trees

Red-Black Trees

- Binary search trees satisfying red-black properties:
(1). Every node is either red or black.
(2). The root and leaves (NIL) are black.
(3). If a node is red, then its parents are black.
- Never two reds in a row.
(4). All simple paths from any node x to a descendant leaf have the same number of black nodes $=$ black-height (x).

Example

Example - In Practice

Height

- Bound on the height in function of the number of nodes:
- height $\leq 2 \lg (n+1)$.
- Because red-black trees are almost balanced.
- Proof:
- Sub-trees of x contain at least $2^{\text {bh }(x)}-1$ nodes (\# of nodes in sub-binary tree, by induction on the height of x).
- bh(root) $\geq h / 2$ so $n \geq 2^{h / 2}-1 \Rightarrow h \leq 2 \lg (n+1)$.

The Point

- Most operations are linear in function of the height.
- The height is bounded in $O(\lg n)$.
- Most operations are bounded in $O(\lg n)$!
- Corollary: The operations search, min, max, successor, and predecessor run in $O(\lg n)$ time on a red-black tree with n nodes.

Modifying Operations

- The operations insert and delete modify the red-black tree:
- insert/delete a node,
- color changes,
- + restructure the links of the tree via rotations.

Keep the red-black tree properties!

Rotations

Important property: rotations maintain the in-order ordering of keys \Rightarrow binary search tree property maintained. $\forall a \in \alpha, \forall b \in \beta, \forall c \in \gamma: a \leq A \leq b \leq B \leq c$

Insertion

- Idea:
- Insert x in the binary search tree.
- Color x red.
- Only red-black property 3 may be violated.
- Move the violation up the tree by re-coloring until it can be fixed by rotations and recoloring.

Insertion - Example

- Insert $\mathrm{x}=15$.

Insertion - Example

- Insert $x=15$.
- Recolor, moving the violation up the tree. Black-height unchanged.

Insertion - Example

- Insert x = 15 .
- Recolor, moving the violation up the tree. Black-height unchanged.
- Right-rotate(18). Black-height unchanged.

Insertion - Example

- Insert $x=15$.
- Recolor, moving the violation up the tree. Black-height unchanged.
- Right-rotate(18).

Black-height unchanged.

- Left-rotate(7) and recolor.

Insertion - Example

- Left-rotate(7) and recolor.

Algorithm for Insertion

- Graphical notations:
- Let denote a sub-tree with a black root.

Algorithm for Insertion

- Identify one of 3 possible cases, each describing a pattern for re-coloring or rotation (left or right):
- Case 1: Recolor and recurse.
- Case 2: Rotate \& transform to case 3.
- Case 3: Rotate.

... and case 3.

Done!

Example

Example

Example

Analysis

- Case 1 can go up the tree.
- Case 2 performs 2 rotations (incl. case 3).
- Case 3 performs 1 rotation.
- Running time: $O(\lg n)$ with at most 2 rotations.

Deletion

- Binary search tree deletion of a node + fix the red-black tree.
- Deletion of a red node is easy - nothing more to do.
- Deletion of a black node: 4 cases. The node to be deleted has at most one child. Let's call it x.
- Note: Deleted node here refers to the node removed from the tree - may be different from the original node we wanted to delete, see binary search tree deletion.

Deletion - Start

Trivial: If x is red, color is black and stop.

Otherwise x is black, mark it double black.

Deletion - Case 1

If x 's sibling is red.

Case 2b, B will be colored black.

Deletion - Case 2

(a) If $\mathrm{x}^{\prime} \mathrm{s}$ sibling is black and x^{\prime} s parent is black and...

(b) If x 's sibling is black and x 's parent is red and...

LDeletion - Case 3

If x 's sibling is black and sibling's children are red + black.

Case 4.

LDeletion - Case 4

If x 's sibling is black and sibling's children are ? + red.

Deletion - Correctness

- We keep the invariant that the tree respects the red-black properties, with special treatment of the black-height (BB counts for 2 B).
- At every step we make progress:
- Case $1 \rightarrow$ Case 2b.
- Case $2 \mathrm{a} \rightarrow \mathrm{x}$ goes up, recurse \rightarrow will terminate.
- Case $2 b \rightarrow$ Stop.
- Case $3 \rightarrow$ Case 4.
- Case $4 \rightarrow$ Stop.
- All configurations are treated.

