Introduction

- A hash table is an effective data structure for implementing dictionaries (set with insert, search, and delete operations).
- Worst case access time is $O(n)$ but expected time is $O(1)$.
- Idea:
 - use direct addressing of arrays
 - compute an index from a key (i.e. hash value)
 - handle collisions with lists.
Hash Tables

In general index = key % N where N is the size of the array.

Direct addressing

Collision list: same index for different data.
Direct Access Tables

Idea:

- Suppose that the set of keys is $K \subseteq \{0, 1, \ldots, m-1\}$, and keys are distinct.
- Setup an array $T[0...m-1]$: $T[k]=x$ if $k \in K$ and $\text{key}[x]==k$ $T[k]=\text{NIL}$ otherwise.

$\Theta(1)$ time
Direct-Address Tables

- Work well for a small set of (different) keys.
 - Direct-address table (i.e. array) where each slot corresponds to a key.
 - Problem with the range of the key.

\[
\begin{align*}
\text{search}(T,k): & \quad \text{return } T[k] \\
\text{insert}(T,x): & \quad T[\text{key}(x)]=x \\
\text{delete}(T,x): & \quad T[\text{key}(x)]=\text{NIL}
\end{align*}
\]
Hash Tables

- How to store if the set of keys is large?
 - Use a hash function to map keys to slots: *collisions solved by chaining.*

```plaintext
search(T,k):
    return List_search(T[h(key(x))])

insert(T,x):
    List_insert(T[h(key(x))],x)

delete(T,x):
    List_delete(T[h(key(x))],x)
```
Application: Symbol-Table

In any reasonable lexical analyzer.

Input: a string.
Output: is it a keyword and if yes which one?

Symbol table T holds n records.
Direct address table.

Record:

- hash
- string = key
- keyword ID

satellite data

See gperf
Resolving Collision by Chaining

Different records that should be in the same slot are linked into a list.

\[h(49) = h(86) = h(52) = i \]
Analysis of Chaining

- Assume *simple uniform hashing*:
 - Each key is equally likely to be hashed to any slot of table T, independently of where other keys are hashed.
- Let n be the number of keys in the table and m the number of slots.
- Define the load factor of T to be $\alpha = n/m$.
 - Represents the average number of keys per slot.
Search Cost

- Expected time to search for a record with a given key=$\Theta(1+\alpha)$.

 Apply hash function and access slot. Search the list.

- Expected time=$\Theta(1)$ if $\alpha=O(1)$, or equivalently if $n=O(m)$.
 - We can enforce this by *re-hashing.*
Resolving Collisions by Open Addressing

Idea: No storage is used outside of the hash table itself.

- Insertion probes the table until an empty slot is found.
- The hash function depends on the key and the probe number.
 \[h:U \times \{0,1,..,m-1\} \to \{0,1,..,m-1\}. \]
- The probe sequence \(\langle h(k,0), h(k,1), .., h(k,m-1) \rangle \) is a permutation of \(\{0,1,..,m-1\} \).
- Problem: The table may fill up and deletion is difficult.
Open Addressing

Insert key $k=496$.

0: Probe $h(496,0)$.
1: Probe $h(496,1)$.
2: Probe $h(496,2)$.

T

0: collision

586

133

204

496

481

m-1

insertion
Open Addressing

Search for key $k=496$.

0: Probe $h(496,0)$.
1: Probe $h(496,1)$.
2: Probe $h(496,2)$.

Search uses the same probe sequence, terminating successfully if it finds the key and unsuccessfully if it finds an empty slot or no match after m tries.
Open Addressing

Hash_insert(T,k):
 i = 0
 repeat
 j = h(k,i)
 if T[j] == NIL then
 T[j] = k
 return j
 fi
 i = i+1
 until i == m
 error

Hash_search(T,k):
 i = 0
 repeat
 j = h(k,i)
 if T[j] == k then
 return j
 fi
 i = i+1
 until T[j] == NIL or i == m
 return NIL
Probing Strategies

- **Linear probing:**
 - Given an ordinary hash function $h'(k)$, linear probing uses the hash function $h(k,i) = (h'(k) + i) \mod m$.
 - Simple method.
 - Suffers from **primary clustering**, where long runs of occupied slots build up, increasing the search time. Moreover, these long runs tend to get longer!
Probing Strategies

- **Double hashing**: (as in example)
 - Given two ordinary hash functions \(h_1(k) \) and \(h_2(k) \), double hashing uses the hash function
 \[
 h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m.
 \]
 - Generally produces excellent results, but \(h_2(k) \) must be relatively prime to \(m \). One way: Make \(m \) a power of 2 and design \(h_2(k) \) to produce only odd numbers.
Analysis of Open Addressing

- Assume *uniform hashing*:
 - Each key is equally likely to have any one of the $m!$ permutations as its probe sequence.
- **Theorem:**
 Given an open-addressed hash table with load factor $\alpha = n/m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$.
- Note: We can use re-hashing to maintain $\alpha < 1$.
Analysis of Open Addressing

- Implications of the theorem:
 - If α is constant then accessing an open-addressed hash table takes constant time.
 - If the table is half full then the expected number of probes is $1/(1-0.5)=2$.
 - If the table is 90% full then the expected number of probes is $1/(1-0.9)=10$.
Hash Functions

- What makes a good hash function?
- If we know the keys in advance then it is possible to construct a perfect hash function and hash table.
 - We cheat when we can.
- But what if we don’t know the keys or even the number of elements to be stored?
Hash Functions

Solution: Use a hash function h to map the universe U of all keys into $\{0,1,...,m-1\}$:

When a record to be inserted maps to an occupied slot, a collision occurs.
Choosing a Hash Function

- Hard to guarantee the assumption of simple uniform hashing! Several common techniques work well in practice as long as their *deficiencies* can be avoided.

- Want we want:
 - A good hash function should distribute the keys *uniformly* into the slots of the table.
 - Regularity in the key distribution should not affect this uniformity.
Division Method

- Assume all keys are integers and define \(h(k) = k \mod m \).

- **Deficiency**: Don’t pick an \(m \) that has a small divisor \(d \). Keys that are congruent modulo \(d \) can affect uniformity. Typically, choose \(m \) prime.

- **Extreme deficiency**: If \(m = 2^r \) then the hash doesn’t even depend on all the bits of \(k \)!
Division Method

- Pick m to be a prime not too close to a power of 2 or 10 and not otherwise used prominently in your computing environment.

- The catch: It may be inconvenient to make the table size a prime.
 - Popular method in practice.
Assume that all keys are integers, $m=2^r$, and our computer has w-bit words. Define $h(k) = (A \cdot k \mod 2^w) >> (w-r)$, where A is an odd integer $2^{w-1} < A < 2^w$.

Don’t pick A too close to 2^w.

Fast operations.

Effect: Mix the bits.
Dot-product Method

- Take a randomized strategy.
 - Let \(m \) be prime. Decompose key \(k \) into \(r+1 \) digits, each with value in the set \{0,1,...,m-1\}:
 \[k = \langle k_0, k_1, ..., k_r \rangle \text{ with } 0 \leq k_i < m \] – \(k \text{ in base } m \).
 - Pick \(a = \langle a_0, a_1, ..., a_r \rangle \) where \(a_i \) is chosen randomly from \{0,1,...,m-1\} – \(a \text{ random in base } m \).
 - Define \(h_a(k) = \sum_{i=0}^{r} a_i k_i \mod m \)

- Excellent in practice by expensive to compute.
Weakness of Hashing

- For any hash function h, a set of keys exists that can cause the average access time to skyrocket (linear).
 - An adversary can pick all keys from $\{k \in U : h(k) = i\}$ for some slot i.

- **Idea**: Choose the hash function at random, independently from the keys!
 - Even if an adversary sees the code, she cannot find bad keys since she doesn’t know which hash function will be used.
Universal Hashing

- **Definition:** Let U be a universe of keys and \mathcal{H} be a finite collection of hash functions (mappings $U \rightarrow \{0,1,...,m-1\}$).

 \mathcal{H} is universal if for all $x,y \in U$ where $x \neq y$, we have $|\{ h \in \mathcal{H} : h(x) = h(y) \}| = |\mathcal{H}|/m$.

- The chance of a collision between x and y is $1/m$ if we choose h randomly from \mathcal{H}.
Universal Hashing

\[\{{h : h(x) = h(y)} \}\]

\[|\mathcal{H}| / m \]
Universality is Good™

Theorem:
Let h be a hash function chosen (uniformly) at random from a universal set \mathcal{H} of hash functions.
Suppose h is used to hash n arbitrary keys into the m slots of a table T.
Then, for a given key x, we have $E[\#\text{collisions with } x] < n/m$.
Proof

- Let C_x be the random variable denoting the total number of collisions of keys in T with x. C_x counts collisions with x.

- Let $c_{xy} = 1$ if $h(x) = h(y)$, 0 otherwise. Indicator variable.

- Notes:
 \[E[c_{xy}] = \frac{1}{m} \]
 \[C_x = \sum_{y \in T - \{x\}} c_{xy} \]
Proof (cont.)

\[
E[C_x] = E\left[\sum_{y \in T - \{x\}} c_{xy} \right] = \sum_{y \in T - \{x\}} E[c_{xy}] = \sum_{y \in T - \{x\}} \frac{1}{m} = \frac{n-1}{m} < \frac{n}{m}
\]
How to Construct a Set of Universal Hash Functions?

Randomized strategy:

- Let m be prime. Decompose key k into $r+1$ digits, each with value in the set \{0,1,...,m-1\}: $k=\langle k_0,k_1,...,k_r \rangle$ with $0 \leq k_i < m$ – k in base m.

- Pick $a=\langle a_0,a_1,...,a_r \rangle$ where a_i is chosen randomly from \{0,1,...,m-1\} – a random in base m.

- Define $h_a(k) = \left(\sum_{i=0}^{r} a_i k_i \right) \mod m$.

- How big is $\mathcal{H}=\{h_a\}$? $|\mathcal{H}|=m^{r+1}$. Dot-product modulo m.

Dot-product Hash Functions Are Universal!

- **Theorem:** The set $\mathcal{H} = \{h_a\}$ is universal.
- **Proof:**
 - Suppose $x = \langle x_0, x_1, \ldots, x_r \rangle$ and $y = \langle y_0, y_1, \ldots, y_r \rangle$ be distinct keys. They differ in at least one digit.
 - For how many $h_a \in \mathcal{H}$ do x and y collide?
 - $h_a(x) = h_a(y)$ implies
 $$\sum_{i=0}^{r} a_i x_i \equiv \sum_{i=0}^{r} a_i y_i \pmod{m}$$
Proof (cont.)

\[\sum_{i=0}^{r} a_i x_i \equiv \sum_{i=0}^{r} a_i y_i \pmod{m} \]

- For every choice of \(r a_j \), only one value of the last \(a_j \) will cause the collision.
- Number of \(h_a \) causing the collision is \(m^r = |\mathcal{H}|/m \).
In Practice

- If you know almost nothing on the elements to be stored (size, number...),
 - you need for a fast good hash function, maybe several ones,
 - you need dynamic hash tables,
 - it’s convenient to have the size being a power of 2,
 - and you should check http://burtleburtle.net/bob/hash/
typedef unsigned int uint;

typedef struct elem_s {
 struct elem_s *next;
 uint hashValue;
 data_t key;
} elem_t;

typedef struct {
 elem_t **slots;
 uint mask;
 uint n;
} table_t;

code example:

const elem_t* search(const table_t* t, const data_t* k) {
 uint h = hash(k);
 const elem_t *e;
 for(e = t->slots[h & t->mask];
 e != NULL &&
 !(e->hashValue == h &&
 strcmp(k, &e->key, sizeof(data_t)) == 0);
 e = e->next);
 return e;
}
typedef unsigned int uint;

typedef struct elem_s {
 struct elem_s *next;
 uint hashValue;
 data_t key;
} elem_t;

typedef struct {
 elem_t **slots;
 uint mask;
 uint n;
} table_t;

void rehash(table_t **t) {
 uint old_size = t->mask+1;
 uint i, new_size = old_size << 1;
 uint new_mask = new_size - 1;
 elem_t **slots = (elem_t**)
 calloc(new_size, sizeof(elem_t*));
 for(i = 0; i < old_size; ++i) {
 elem_t *e = t->slots[i];
 while(e != NULL) {
 elem_t *next = e->next;
 uint j = e->hashValue & new_mask;
 e->next = slots[j];
 slots[j] = e;
 e = next;
 }
 }
 free(t->slots);
 t->slots = slots;
 t->mask = new_mask;
}