Hashing \& Hash Tables

Alexandre David
B2-206

Introduction

- A hash table is an effective data structure for implementing dictionaries (set with insert, search, and delete operations).
- Worst case access time is $O(n)$ but expected time is $O(1)$.
- Idea:
- use direct addressing of arrays
- compute an index from a key (i.e. hash value)
- handle collisions with lists.

Hash Tables

Direct Access Tables

- Idea:
- Suppose that the set of keys is $K \subseteq\{0,1, \ldots, m$ 1\}, and keys are distinct.
- Setup an array T[0...m-1]: $T[k]=x$ if $k \in K$ and $k e y[x]==k$
$\Theta(1)$ time T[k]=NIL otherwise.

Direct-Address Tables

- Work well for a small set of (different) keys.
- Direct-address table (i.e. array) where each slot corresponds to a key.
- Problem with the range of the key.

$$
\begin{array}{|l}
\hline \text { search(} T, k) \text { : } \\
\text { return } T[k]
\end{array}
$$

$$
\begin{array}{|l|}
\hline \operatorname{insert}(T, x): \\
\text { T[key }(x)]=x
\end{array}
$$

delete $(T, x):$
$T[\operatorname{key}(x)]=N I L$

Hash Tables

- How to store if the set of keys is large?
- Use a hash function to map keys to slots: collisions solved by chaining.

```
search(T,k):
return List_search(T[h(key(x))])
```

```
insert(T,x):
List_insert(T[h(key(x))],x)
```

```
delete(T,x):
```

List_delete(T[h(key(x))],x)

Application: Symbol-Table In any reasonable lexical analyzer.

I nput: a string. Output: is it a keyword and if yes which one?
Symbol table Tholds n records. Direct address table.

Record:

See gperf

Resolving Collision by Chaining

T

Analysis of Chaining

- Assume simple uniform hashing:
- Each key is equally likely to be hashed to any slot of table T, independently of where other keys are hashed.
- Let n be the number of keys in the table and m the number of slots.
- Define the load factor of T to be $\alpha=n / m$.
- Represents the average number of keys per slot.

Search Cost

- Expected time to search for a record with a given key $=\Theta(1+\alpha)$.

Search the function and list. access slot.

- Expected time $=\Theta(1)$ if $\alpha=O(1)$, or equivalently if $n=O(m)$.
- We can enforce this by re-hashing.

Resolving Collisions by Open Addressing

- Idea: No storage is used outside of the hash table itself.
- Insertion probes the table until an empty slot is found.
- The hash function depends on the key and the probe number. $h: U \times\{0,1, . ., m-1\} \rightarrow\{0,1, . ., m-1\}$.
- The probe sequence $\langle\mathrm{h}(\mathrm{k}, 0), \mathrm{h}(\mathrm{k}, 1), . ., \mathrm{h}(\mathrm{k}, \mathrm{m}-1)\rangle$ is a permutation of $\{0,1, . ., \mathrm{m}-1\}$.
- Problem: The table may fill up and deletion is difficult.

Open Addressing

Insert key $\mathrm{k}=496$.
0 : Probe h(496,0).
1: Probe h(496,1).

Open Addressing

Open Addressing

```
Hash_insert(T,k):
i=0
repeat
    j=h(k,i)
    if T[j] == NIL then
        T[j] = k
        return j
    fi
    i= i+1
until i== m
error
```


Probing Strategies

- Linear probing:
- Given an ordinary hash function $h^{\prime}(k)$, linear probing uses the hash function $h(k, i)=\left(h^{\prime}(k)+i\right)$ mod m.
- Simple method.
- Suffers from primary clustering, where long runs of occupied slots build up, increasing the search time. Moreover, these long runs tend to get longer!

Probing Strategies

- Double hashing: (as in example)
- Given two ordinary hash functions $h_{1}(k)$ and $h_{2}(k)$, double hashing uses the hash function $h(k, i)=\left(h_{1}(k)+i * h_{2}(k)\right) \bmod m$.
- Generally produces excellent results, but $h_{2}(k)$ must be relatively prime to m. One way: Make m a power of 2 and design $h_{2}(k)$ to produce only odd numbers.

Analysis of Open Addressing

- Assume uniform hashing:
- Each key is equally likely to have any one of the m ! permutations as its probe sequence.
- Theorem:

Given an open-addressed hash table with load factor $\alpha=n / m<1$, the expected number of probes in an unsuccessful search is at most 1/(1- α).

- Note: We can use re-hashing to maintain $\alpha<1$.

Analysis of Open Addressing

- Implications of the theorem:
- If α is constant then accessing an openaddressed hash table takes constant time.
- If the table is half full then the expected number of probes is $1 /(1-0.5)=2$.
- If the table is 90% full then the expected number of probes is $1 /(1-0.9)=10$.

Hash Functions

- What makes a good hash function?
- If we know the keys in advance then it is possible to construct a perfect hash function and hash table.
- We cheat when we can.
? But what if we don't know the keys or even the number of elements to be stored?

Hash Functions

Solution: Use a hash function h to map the universe U of all keys into $\{0,1, \ldots, m-1\}$:

When a record to be inserted maps to an occupied slot, a collision occurs.

Choosing a Hash Function

- Hard to guarantee the assumption of simple uniform hashing! Several common techniques work well in practice as long as their deficiencies can be avoided.
- Want we want:
- A good hash function should distribute the keys uniformly into the slots of the table.
- Regularity in the key distribution should not affect this uniformity.

Division Method

- Assume all keys are integers and define $h(k)=k \bmod m$.
- Deficiency: Don't pick an m that has a small divisor d. Keys that are congruent modulo d can affect uniformity. Typically, choose m prime.
- Extreme deficiency: If $m=2^{r}$ then the hash doesn't even depend on all the bits of k !

Division Method

- Pick m to be a prime not too close to a power of 2 or 10 and not otherwise used prominently in your computing environment.
- The catch: It may be inconvenient to make the table size a prime.
- Popular method in practice.

Multiplication Method

- Assume that all keys are integers, $m=2^{r}$, and our computer has w-bit words. Define $h(k)=\left(A^{*} k \bmod 2^{w}\right) \gg(w-r)$, where A is an odd integer $2^{\mathrm{w}-1}<\mathrm{A}<2^{\mathrm{w}}$.
- Don't pick A too close to 2^{w}.
- Fast operations.
- Effect: Mix the bits.

Dot-product Method

- Take a randomized strategy.
- Let m be prime. Decompose key k into $r+1$ digits, each with value in the set $\{0,1, \ldots, m-1\}$:
2 vectors, $\mathrm{k}=\left\langle\mathrm{k}_{0}, \mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{r}}\right\rangle$ with $0 \leq \mathrm{k}_{\mathrm{i}}<\mathrm{m}-k$ in base m.
in base $m>$ Pick $a=\left\langle a_{0}, a_{1}, \ldots, a_{\mathrm{r}}\right\rangle$ where a_{i} is chosen randomly from $\{0,1, \ldots, m-1\}$ - a random in base m.
$\xrightarrow{\text { - Define }} h_{a}(k)=\sum_{i=0}^{+} a_{i} k_{i} \bmod m$
- Excellent in practice by expensive to compute.

Weakness of Hashing

- For any hash function h, a set of keys exists that can cause the average access time to skyrocket (linear).
- An adversary can pick all keys from $\{k \in U: h(k)=i\}$ for some slot i.
- I dea: Choose the hash function at random, independently from the keys!
- Even if an adversary sees the code, she cannot find bad keys since she doesn't know which hash function will be used.

Universal Hashing

- Definition: Let U be a universe of keys and \mathcal{H} be a finite collection of hash functions (mappings $U \rightarrow\{0,1, \ldots, m-1\}$). \mathcal{H} is universal if for all $x, y \in U$ where $x \neq y$, we have $|\{h \in \mathcal{H}: h(x)=h(y)\}|=|\mathcal{H}| / m$.
- The chance of a collision between x and y is $1 / m$ if we choose h randomly from \mathcal{H}.

Universal Hashing

Universality is Good ${ }^{\text {TM }}$

- Theorem:

Let h be a hash function chosen
(uniformly) at random from a universal set \mathcal{H} of hash functions.
Suppose h is used to hash n arbitrary keys into the m slots of a table T.
Then, for a given key x, we have $\mathrm{E}[\#$ collisions with $x]<n / m$.

Proof

- Let C_{X} be the random variable denoting the total number of collisions of keys in T with $x . C_{x}$ counts collisions with x.
- Let $c_{x y}=1$ if $h(x)=h(y), 0$ otherwise. Indicator variable.
- Notes:

$$
\mathrm{E}\left[c_{x y}\right]=1 / m \quad C_{x}=\sum_{y \in T-\{x\}} c_{x y}
$$

Proof (cont.)

$$
\begin{aligned}
& E\left[C_{x}\right]=E\left[\sum_{v \in T-\left(x x^{\prime}\right.}\right] \\
& =\sum_{y \in T-x \mid} E\left[c_{y}\right] \\
& =\sum_{y \in T-\{x\}} 1 / m=\frac{n-1}{m}<\frac{n}{m}
\end{aligned}
$$

How to Construct a Set of Universal Hash Functions?

- Randomized strategy:
- Let m be prime. Decompose key k into $r+1$ digits, each with value in the set $\{0,1, \ldots, m-1\}$: $\mathrm{k}=\left\langle\mathrm{k}_{0}, \mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{r}}\right\rangle$ with $0 \leq \mathrm{k}_{\mathrm{i}}<\mathrm{m}-k$ in base m.
- Pick $a=\left\langle a_{0}, a_{1}, \ldots, a_{r}\right\rangle$ where a_{i} is chosen randomly from $\{0,1, \ldots, m-1\}$ - a random in base m.
- Define

$$
\begin{gathered}
\left.h_{a}(k)=\left(\sum_{i=0}^{r} a_{i} k_{i}\right) \bmod m>h_{a}\right\} ?
\end{gathered}
$$

- How big is $\mathcal{H}=\left\{\mathrm{h}_{\mathrm{a}}\right\}$? $|\mathcal{H}|=\mathrm{m}^{\mathrm{r}+1}$.

Dot-product modulo m.

Dot-product Hash Functions Are Universal!

- Theorem: The set $\mathcal{H}=\left\{\mathrm{h}_{\mathrm{a}}\right\}$ is universal.
- Proof:
 distinct keys. They differ in at least one digit.
- For how many $h_{a} \in \mathcal{H}$ do x and y collide? $h_{a}(x)=h_{a}(y)$ implies

$$
\sum_{i=0}^{r} a_{i} x_{i} \equiv \sum_{i=0}^{r} a_{i} y_{i} \quad(\bmod m)
$$

Proof (cont.)

$$
\sum_{i=0}^{r} a_{i} x_{i} \equiv \sum_{i=0}^{r} a_{i} y_{i} \quad(\bmod m)
$$

- For every choice of $r a_{i j}$ only one value of the last a_{j} will cause the collision. Number of h_{a} causing the collision is $\mathrm{m}^{\mathrm{r}}=|\mathcal{H}| / \mathrm{m}$.

In Practice

- If you know almost nothing on the elements to be stored (size, number...),
- you need for a fast good hash function, maybe several ones,
- you need dynamic hash tables,
- it's convenient to have the size being a power of 2,
- and you should check http://burtleburtle.net/bob/hash/

Code Example - Search

Size $=2^{p}$

typedef unsigned int uint;
typedef struct elem_s \{ struct elem_s *next; uint hashValue;
data_t key;
\} elem_t;
typedef struct \{
elem_t **slots;
uint mask;
uint n;
\} table_t:

```
const elem_t* search(const table_t* t,
                                    const data_t* k) {
    uint h = hash(k);
    const elem_t *e;
    for(e = t->slots[h & t->mask];
    e!= NULL &&
        !(e->hashValue == h &&
        strcmp(k, &e->key,
            sizeof(data_t)) == 0);
    e = e->next);
    return e;
}
```


Rehash
 Size $=2^{p}$

typedef unsigned int uint;
typedef struct elem_s \{
struct elem_s *next;
uint hashValue;
data_t key;
\} elem_t;
typedef struct \{
elem_t **slots;
uint mask;
uint n;
\} table_t;

