
Hashing & Hash Tables

Alexandre David
B2-206

10-11-06 AA1 2

Introduction
A hash table is an effective data structure
for implementing dictionaries (set with
insert, search, and delete operations).
Worst case access time is O(n) but
expected time is O(1).
Idea:

use direct addressing of arrays
compute an index from a key (i.e. hash value)
handle collisions with lists.

10-11-06 AA1 3

Hash Tables

Data Key

Array T

Direct
addressing

Data Data

Collision list:
same index for
different data.

In general index=key%N
where N is the size of the array.

Slot

Key Key

10-11-06 AA1 4

Direct Access Tables
Idea:

Suppose that the set of keys is K ⊆ {0,1,…,m-
1}, and keys are distinct.
Setup an array T[0…m-1]:
T[k]=x if k∈K and key[x]==k
T[k]=NIL otherwise.

Θ(1) time

10-11-06 AA1 5

Direct-Address Tables
Work well for a small set of (different)
keys.

Direct-address table (i.e. array) where each
slot corresponds to a key.
Problem with the range of the key.

search(T,k):
return T[k]

insert(T,x):
T[key(x)]=x

delete(T,x):
T[key(x)]=NIL

10-11-06 AA1 6

Hash Tables
How to store if the set of keys is large?

Use a hash function to map keys to slots:
collisions solved by chaining.

search(T,k):
return List_search(T[h(key(x))])

insert(T,x):
List_insert(T[h(key(x))],x)

delete(T,x):
List_delete(T[h(key(x))],x)

10-11-06 AA1 7

Application: Symbol-Table
In any reasonable lexical analyzer.

Input: a string.
Output: is it a keyword
and if yes which one?

Symbol table T holds n records.
Direct address table.

hash

string=key

keyword ID

Record:

?

?
satellite
data See gperf

T

10-11-06 AA1 8

Resolving Collision by Chaining
T

slot i 49 86 52 /

h(49)=h(86)=h(52)=i

Different records that should
be in the same slot are linked
into a list.

10-11-06 AA1 9

Analysis of Chaining
Assume simple uniform hashing:

Each key is equally likely to be hashed to any
slot of table T, independently of where other
keys are hashed.

Let n be the number of keys in the table
and m the number of slots.
Define the load factor of T to be α=n/m.

Represents the average number of keys per
slot.

10-11-06 AA1 10

Search Cost
Expected time to search for a record with a
given key=Θ(1+α).

Expected time=Θ(1) if α=O(1), or
equivalently if n=O(m).

We can enforce this by re-hashing.

Apply hash
function and
access slot.

Search the
list.

10-11-06 AA1 11

Resolving Collisions by Open
Addressing
Idea: No storage is used outside of the
hash table itself.

Insertion probes the table until an empty slot
is found.
The hash function depends on the key and the
probe number.
h:U×{0,1,..,m-1} → {0,1,..,m-1}.
The probe sequence 〈h(k,0),h(k,1),..,h(k,m-1)〉
is a permutation of {0,1,..,m-1}.
Problem: The table may fill up and deletion is
difficult.

10-11-06 AA1 12

Open Addressing

Insert key k=496.

586
133

204

481

T
0

m-1

0: Probe h(496,0).

collision204

1: Probe h(496,1). 586 collision

2: Probe h(496,2).

496 insertion

10-11-06 AA1 13

Open Addressing

Search for key k=496.

586
133

204
496
481

T
0

m-1

0: Probe h(496,0).

wrong key204

1: Probe h(496,1). 586 wrong key

2: Probe h(496,2).

496 match
Search uses the same
probe sequence, terminating
successfully if it finds the key
and unsuccessfully if it finds
an empty slot or no match after
m tries.

10-11-06 AA1 14

Open Addressing

Hash_insert(T,k):
i = 0
repeat

j = h(k,i)
if T[j] == NIL then

T[j] = k
return j

fi
i = i+1

until i == m
error

Hash_search(T,k):
i = 0
repeat

j = h(k,i)
if T[j] == k then

return j
fi
i = i+1

until T[j] == NIL or i == m
return NIL

10-11-06 AA1 15

Probing Strategies
Linear probing:

Given an ordinary hash function h’(k), linear
probing uses the hash function
h(k,i)=(h’(k)+i) mod m.
Simple method.
Suffers from primary clustering, where long
runs of occupied slots build up, increasing the
search time. Moreover, these long runs tend
to get longer!

10-11-06 AA1 16

Probing Strategies
Double hashing: (as in example)

Given two ordinary hash functions h1(k) and
h2(k), double hashing uses the hash function
h(k,i)=(h1(k)+i*h2(k)) mod m.
Generally produces excellent results, but h2(k)
must be relatively prime to m. One way: Make
m a power of 2 and design h2(k) to produce
only odd numbers.

10-11-06 AA1 17

Analysis of Open Addressing
Assume uniform hashing:

Each key is equally likely to have any one of
the m! permutations as its probe sequence.
Theorem:
Given an open-addressed hash table with load
factor α=n/m<1, the expected number of
probes in an unsuccessful search is at most
1/(1-α).
Note: We can use re-hashing to maintain α<1.

10-11-06 AA1 18

Analysis of Open Addressing
Implications of the theorem:

If α is constant then accessing an open-
addressed hash table takes constant time.
If the table is half full then the expected
number of probes is 1/(1-0.5)=2.
If the table is 90% full then the expected
number of probes is 1/(1-0.9)=10.

10-11-06 AA1 19

Hash Functions
What makes a good hash function?
If we know the keys in advance then it is
possible to construct a perfect hash
function and hash table.

We cheat when we can.

But what if we don’t know the keys or
even the number of elements to be
stored?

?

10-11-06 AA1 20

Hash Functions
Solution: Use a hash function h to map
the universe U of all keys into {0,1,…,m-1}:

k1

k2

k5

k3

k4
k6

U

T
0

m-1

h(k1)
h(k4)=h(k2)

h(k3)=h(k6)
h(k5)

When a record
to be inserted
maps to an
occupied slot,
a collision
occurs.

10-11-06 AA1 21

Choosing a Hash Function
Hard to guarantee the assumption of
simple uniform hashing! Several common
techniques work well in practice as long as
their deficiencies can be avoided.
Want we want:

A good hash function should distribute the
keys uniformly into the slots of the table.
Regularity in the key distribution should not
affect this uniformity.

10-11-06 AA1 22

Division Method
Assume all keys are integers and define
h(k)=k mod m.
Deficiency: Don’t pick an m that has a
small divisor d. Keys that are congruent
modulo d can affect uniformity. Typically,
choose m prime.
Extreme deficiency: If m=2r then the hash
doesn’t even depend on all the bits of k !

10-11-06 AA1 23

Division Method
Pick m to be a prime not too close to a
power of 2 or 10 and not otherwise used
prominently in your computing
environment.
The catch: It may be inconvenient to make
the table size a prime.

Popular method in practice.

10-11-06 AA1 24

Multiplication Method
Assume that all keys are integers, m=2r,
and our computer has w-bit words. Define
h(k)=(A*k mod 2w) >> (w-r),
where A is an odd integer 2w-1<A<2w.
Don’t pick A too close to 2w.
Fast operations.
Effect: Mix the bits.

10-11-06 AA1 25

Dot-product Method
Take a randomized strategy.

Let m be prime. Decompose key k into r+1
digits, each with value in the set {0,1,…,m-1}:
k=〈k0,k1,…,kr〉 with 0≤ki<m – k in base m.
Pick a=〈a0,a1,…,ar〉 where ai is chosen
randomly from {0,1,…,m-1} – a random in
base m.
Define

Excellent in practice by expensive to compute.

∑
=

=
r

i
iia mkakh

0
mod)(

2 vectors
in base m

dot-product

10-11-06 AA1 26

Weakness of Hashing
For any hash function h, a set of keys
exists that can cause the average access
time to skyrocket (linear).

An adversary can pick all keys from
{k∈U : h(k)=i } for some slot i.

Idea: Choose the hash function at
random, independently from the keys!

Even if an adversary sees the code, she
cannot find bad keys since she doesn’t know
which hash function will be used.

10-11-06 AA1 27

Universal Hashing
Definition: Let U be a universe of keys and
H be a finite collection of hash functions
(mappings U→ {0,1,…,m-1}).
H is universal if for all x,y∈U where x≠y,
we have |{h ∈H : h(x)=h(y) }|=|H |/m.

The chance of a collision between x and y is
1/m if we choose h randomly from H.

10-11-06 AA1 28

Universal Hashing

H

{h : h(x)=h(y) }

|H |/m

10-11-06 AA1 29

Universality is Good™
Theorem:
Let h be a hash function chosen
(uniformly) at random from a universal set
H of hash functions.
Suppose h is used to hash n arbitrary keys
into the m slots of a table T.
Then, for a given key x, we have
E[#collisions with x] < n/m.

10-11-06 AA1 30

Proof
Let Cx be the random variable denoting the
total number of collisions of keys in T with
x. Cx counts collisions with x.
Let cxy=1 if h(x)=h(y), 0 otherwise.
Indicator variable.
Notes:
E[cxy]=1/m ∑

−∈

=
}{xTy
xyx cC

10-11-06 AA1 31

Proof (cont.)

][xCE

m
n

m
nm

cE

cE

xTy

xTy
xy

xTy
xy

<
−

==

=

⎥
⎦

⎤
⎢
⎣

⎡
=

∑

∑

∑

−∈

−∈

−∈

1/1

][

}{

}{

}{

10-11-06 AA1 32

How to Construct a Set of
Universal Hash Functions?
Randomized strategy:

Let m be prime. Decompose key k into r+1
digits, each with value in the set {0,1,…,m-1}:
k=〈k0,k1,…,kr〉 with 0≤ki<m – k in base m.
Pick a=〈a0,a1,…,ar〉 where ai is chosen
randomly from {0,1,…,m-1} – a random in
base m.
Define
How big is H={ha}?
|H |=mr+1.

mkakh
r

i
iia mod)(

0
⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

Dot-product modulo m.

10-11-06 AA1 33

Dot-product Hash Functions Are
Universal!
Theorem: The set H={ha} is universal.
Proof:

Suppose x =〈x0,x1,…,xr〉 and y =〈y0,y1,…,yr〉 be
distinct keys. They differ in at least one digit.
For how many ha∈H do x and y collide?
ha(x)=ha(y) implies

∑ ∑
= =

≡
r

i

r

i
iiii myaxa

0 0
)(mod

10-11-06 AA1 34

Proof (cont.)

For every choice of r ai, only one value of
the last aj will cause the collision.
Number of ha causing the collision is
mr=|H |/m.

∑ ∑
= =

≡
r

i

r

i
iiii myaxa

0 0
)(mod

10-11-06 AA1 35

In Practice
If you know almost nothing on the
elements to be stored (size, number…),

you need for a fast good hash function, maybe
several ones,
you need dynamic hash tables,
it’s convenient to have the size being a power
of 2,
and you should check
http://burtleburtle.net/bob/hash/

10-11-06 AA1 36

Code Example - Search
Size=2p

typedef unsigned int uint;

typedef struct elem_s {
struct elem_s *next;
uint hashValue;
data_t key;

} elem_t;

typedef struct {
elem_t **slots;
uint mask;
uint n;

} table_t;

const elem_t* search(const table_t* t,
const data_t* k) {

uint h = hash(k);
const elem_t *e;
for(e = t->slots[h & t->mask];

e != NULL &&
!(e->hashValue == h &&

strcmp(k, &e->key,
sizeof(data_t)) == 0);

e = e->next);
return e;

}

10-11-06 AA1 37

Rehash
Size=2p

typedef unsigned int uint;

typedef struct elem_s {
struct elem_s *next;
uint hashValue;
data_t key;

} elem_t;

typedef struct {
elem_t **slots;
uint mask;
uint n;

} table_t;

void rehash(table_t *t) {
uint old_size = t->mask+1;
uint i, new_size = old_size << 1;
uint new_mask = new_size – 1;
elem_t **slots = (elem_t**)

calloc(new_size, sizeof(elem_t*));
for(i = 0; i < old_size; ++i) {

elem_t *e = t->slots[i];
while(e != NULL) {

elem_t *next = e->next;
uint j = e->hashValue & new_mask;
e->next = slots[j];
slots[j] = e;
e = next;

}
}
free(t->slots);
t->slots = slots;
t->mask = new_mask;

}

