!'_ Hashing & Hash Tables

Alexandre David
B2-206

Introduction

s A hash tableis an effective data structure
for implementing dictionaries (set with
insert, search, and delete operations).

= Worst case access time is O(n) but
expected time is O(1).

= Idea:
= Use direct addressing of arrays

= compute an index from a key (i.e. hash value)
= handle collisions with lists.

iHash Tables

Data

Key

Direct
addressing

In general index=key%N
where N is the size of the array.

Array T
Key Key
g " Data Data
Collision list:

same index for
different data.

Slot

iDirect Access Tables

s Idea:

= Suppose that the set of keys is K= {0, 1,...,m-
1}, and keys are distinct.

= Setup an array T[0...m-1]:
T[k]=x if keK and key[x]== ©(1) time
T[k]=NIL otherwise.

iDirect-Address Tables

= Work well for a small set of (different)
keys.

= Direct-address table (i.e. array) where each
slot corresponds to a key.

= Problem with the range of the key.

search(T ,k): insert(T x): delete(T x):
return T[k] Tlkey(x)]=x Tlkey(x)]=NIL

iHash Tables

= How to store if the set of keys is large?

= Use a hash function to map keys to slots:
collisions solved by chaining.

search(T k):
return List_search(TTh(key(x))])

insert(T x):
List_insert(T[h(key(x))],x)

delete(T x):
List_delete(T[h(key(x))],x)

Application: Symbol-Table

In any reasonable lexical analyzer.

Input: a string.

Output: is it a keyword
and if yes which one?

Symbol table T holds n records.
Direct address table.

Record:

@ hash
@ string=key

keyword ID

satellite
data

—>

See gperf

iResoIving Collision by Chaining

r

Different records that should
be in the same slot are linked
into a list.

slot/ —T*49| —T*86| —|T*52| /

h(49)=h(86)=h(52)=i

Analysis of Chaining

s Assume simple uniform hashing.

=« Each key is equally likely to be hashed to any
slot of table T, independently of where other
keys are hashed.

= Let 7 be the number of keys in the table
and m the number of slots.
= Define the load factor of T to be a=n/m.

= Represents the average number of keys per
slot.

Search Cost

= Expected time to search for a record with a
given key=0(1+a).

Apply hash Search the
function and list.
access slot.

= Expected time=0(1) if a=0(1), or
equivalently if n=0(m).
= We can enforce this by re-hashing.

10

Resolving Collisions by Open
Addressing

= Idea: No storage is used outside of the
hash table itself.

= Insertion probes the table until an empty slot
is found.

= The hash function depends on the key and the
probe number.
h:Ux{0,1,...m-1} - {0,1,..,m-1J.

= The probe sequence (h(k,0),h(k,1),..,h(k,m-1))
IS a permutation of {0,1,..,m-1}.

= Problem: The table may fill up and deletion is
difficult.

11

iOpen Addressing

Insert key k=496.

r

0: Probe h(496,0). L
1: Probe h(496,1).

i

586

133

204

2: Probe h(496,2). s:

496

481

0

collision

collision
insertion

m-1

12

iOpen Addressing

Search for key k=496.

r

0: Probe h(496,0). L

586

1: Probe h(496,1).]

133

2. Probe h(496,2). <~

Search uses the same \

204

probe sequence, terminating ™

496

successfully if it finds the key

481

and unsuccessfully if it finds

an empty slot or no match after

m tries.

0

wrong key

wrong key
match

m-1

13

iOpen Addressing

Hash_insert(T k):
i1=0
repeat
j = h(k,i)
if T[j] == NIL then
T[1=k
return |
fi
| = i+]
until i == m
error

Hash_search(T k):
=0
repeat

j = h(k.i)

if T[j] ==k then

return |

fi

i = i+]
until T[j]==NIL ori ==
return NIL

14

Probing Strategies

= Linear probing:
=« Given an ordinary hash function A7k), linear
probing uses the hash function
h(k,i)=(h{k)+i) mod m.
=« Simple method.

= Suffers from primary clustering, where long
runs of occupied slots build up, increasing the
search time. Moreover, these long runs tend
to get longer!

15

iProbing Strategies

= Double hashing: (as in example)

= Given two ordinary hash functions /,(k) and
h,(k), double hashing uses the hash function
h(k,i)=(h,(k)+i*h,(k)) mod m.

= Generally produces excellent results, but /,(k)
must be relatively prime to m. One way: Make
m a power of 2 and design /,(k) to produce
only odd numbers.

16

Analysis of Open Addressing

s Assume uniform hashing.

= Each key is equally likely to have any one of
the m/ permutations as its probe sequence.

= Theorem:
Given an open-addressed hash table with load
factor a=n/m<1, the expected number of
probes in an unsuccessful search is at most

1/(1-a).

= Note: We can use re-hashing to maintain a<1.

17

Analysis of Open Addressing

= Implications of the theorem:
» If a is constant then accessing an open-

addressed hash table takes constant time.

« If the table is half full then the expected
number of probes is 1/(1-0.5)=2.

« If the table is 90% full then the expected
number of probes is 1/(1-0.9)=10.

18

iHash Functions

= What makes a good hash function?

= If we know the keys in advance then it is
possible to construct a perfect hash
function and hash table.

= We cheat when we can.

(2) = But what if we don’t know the keys or
even the number of elements to be
stored?

19

iHash Functions

Solution: Use a hash function 2 to map
the universe U of all keys into {0, 1,...,m-1}:

7_
0

U , When a record

k, h(k,) to be inserted
K, h(k,)=h(k;) maps to an
Ks occupied sloft,

h(k;)=h(k;) a collision
h(ks) occurs.
m-1

10-11-06 AAl 20

Choosing a Hash Function

= Hard to guarantee the assumption of
simple uniform hashing! Several common
techniques work well in practice as long as
their deficiencies can be avoided.

= Want we want:

= A good hash function should distribute the
keys uniformly into the slots of the table.

= Regularity in the key distribution should not
affect this uniformity.

21

Division Method

= Assume all keys are integers and define
h(k)=k mod m.

= Deficiency: Don't pick an mthat has a
small divisor d. Keys that are congruent

modulo d can affect uniformity. Typically,
choose /77 prime.

= Extreme deficiency: If m=2"then the hash
doesn’t even depend on all the bits of 4!

22

iDivision Method

= Pick m to be a prime not too close to a
power of 2 or 10 and not otherwise used
prominently in your computing
environment.

= [he catch: It may be inconvenient to make
the table size a prime.

= Popular method in practice.

23

Multiplication Method

= Assume that all keys are integers, m=_2,
and our computer has w-bit words. Define
h(k)=(A*k mod 2) >> (w-r),
where A is an odd integer 2¥W1<A<2V,

= Don't pick A too close to 2V.

= Fast operations.

a Effect: Mix the bits.

24

Dot-product Method

= Take a randomized strategy.

« Let /77 be prime. Decompose key kinto r+.1
digits, each with value in the set {0,1,...,m-1}:
> vectors = K=(Ko/ Ky, K with 0<ki<m — & /n base m.
inbase m “u Pick a=(ay,ay,...,a,y where a. is chosen
randomly from {0,1,...,m-1} — a random in
base m.

:
« Define h.(k)=) ak modm
doT-producT/ a() IZ(; o

= Excellent in practice by expensive to compute.2

5

Weakness of Hashing

= For any hash function h, a set of keys
exists that can cause the average access
time to skyrocket (linear).

= An adversary can pick all keys from
{keU: h(k)=i} for some slot /.

s ldea: Choose the hash function at
random, independently from the keys!

= Even if an adversary sees the code, she
cannot find bad keys since she doesn’t know
which hash function will be used.

26

Universal Hashing

= Definition: Let U be a universe of keys and
‘H be a finite collection of hash functions

(mappings U— {0,1,...,m-1}),
H is universal if for all x,yeU where xzy,

we have [{h eH : h(x)=h(y) }|=|H |/m.

= The chance of a collision between xand yis
1/mif we choose A randomly from .

27

iUniversaI Hashing

L h(x)=h(y) } .

Iﬂl/m{

10-11-06

28

Universality is Good™

= [heorem:
Let /7 be a hash function chosen
(uniformly) at random from a universal set
JH of hash functions.
Suppose /7 is used to hash 77 arbitrary keys
into the /7 slots of a table 7.
Then, for a given key x, we have
E[#collisions with x] < n/m.

29

iProof

s Let C, be the random variable denoting the
total number of collisions of keys in 7 with
Xx. C, counts collisions with x.

= Let ¢ =1 if Alx)=h(y), O otherwise.
Indicator variable.

= Notes:
E[ny]=]/m CX — ZCXy
yeT —{x}

30

31

How to Construct a Set of
Universal Hash Functions?

= Randomized strategy:

« Let /77 be prime. Decompose key kinto r+.1
digits, each with value in the set {0,1,...,m-1}:
k=(Kq,Ky,...,K) with 0<ki<m — k /n base m.

= Pick a=(a,,a;,...,a,) where a, is chosen
randomly from {0,1,...,m-1} — a random in
base m.

I
« Define h, (K) = (Z a.k. j mod m
= How big is H={h_}? \I1=0

| H |=mr+L, Dot-product modulo m.

32

Dot-product Hash Functions Are
Universal!

= Theorem: The set H={h_} is universal.

= Proof:

= SUppose x =(X, X;,...,.xy and y =y, V...,V be
distinct keys. They differ in at least one digit.

= For how many A, # do xand y collide?
ha(x)=h,(y) implies
I I

33

iProof (cont.)
iaixi = iai y; (modm)

= For every choice of r g, only one value of
the last a; will cause the collision.
Number of A, causing the collision is

mr=|3H |/m.

34

iIn Practice

= If you know almost nothing on the
elements to be stored (size, number...),

= YOu need for a fast good hash function, maybe
several ones,

= YOou need dynamic hash tables,

= it's convenient to have the size being a power
of 2,

= and you should check
http://burtleburtle.net/bob/hash/

35

Code Example - Search

i Size=2r

typedef unsigned int uint;

typedef struct elem_s {
struct elem_s *next;
uint hashValue;
data_t key;

} elem_t;

typedef struct {
elem_t **slots;
uint mask;
uint n;

} table_t;

const elem_t1* search(const table_t* t,
const data_t* k) {
uint h = hash(k);
const elem_t *e;
for(e = t->slots[h & t->mask];
e I= NULL &&
|(e->hashValue == h &&
strcmp(k, &e->key,
sizeof(data_t)) == 0);
e = e->next);
return e;

}

36

Rehash

i Size=2r

typedef unsigned int uint;

typedef struct elem_s {
struct elem_s *next;
uint hashValue;
data_t key;

} elem_t;

typedef struct {
elem_t **slots;
uint mask;
uint n;

} table_t;

void rehash(table_t *t) {

uint old_size = t->mask+1;

uint i, new_size = old_size <« 1;
uint new_mask = new_size - 1;
elem_t **slots = (elem_1**)

calloc(new_size, sizeof(elem_1*));

for(i = O; i < old_size; ++i) {
elem_t *e = t->slots[i];
while(e = NULL) {
elem_t *next = e->next;

uint j = e->hashValue & new_mask;

e->next = slots[j];
slots[j] = e;
e = hext;
}
}

free(t->slots);
t->slots = slots;
t->mask = new_mask;

37

