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Linear Sort? But…
Best algorithms so far perform in Θ(n lgn).
But they are comparison sorts.

We do not inspect the value or use other 
information.
Only comparisons between keys.

Comparison sorts need at least Ω(n lgn).
Previous algorithms were optimal!
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Optimality
How to prove that n lgn is the lower bound 
for all possible comparison sort algorithms?
Use decision-tree.

Binary trees representing comparisons.
All possible permutations represented.
n! permutations, thus n! leaves.
Sorting algorithms find an ordering, i.e., a 
path.
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Decision Tree
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A[i]≤A[j] A[i]>A[j]

Comparisons
between all
(needed) pairs.

“The tree represents the comparisons
done by a sorting algorithm.”
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Decision Tree
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The point: Lower bound on the heights of
all decision trees = lower bound of running
time of any comparison sort algorithm.

Because to find one
ordering one must go
on a path from the root
to a leaf.

Every sort algorithm
has a different decision
tree ⇒ bound all of
them!

Bound on
the height.
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Decision Tree
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Binary tree
height=h

leaves ≤ 2h

Leaves=permutations n! = leaves h≥lg(n! )=Ω(n lgn)
(3.18)(Any correct algorithm must be able to produce

any permutation)
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Optimality
Conclusion:

Any correct algorithm must go through
Ω(n lgn) to produce any ordering.
We have sorting algorithms that have a bound 
of O(n lgn).
These (comparison) sorting algorithm are 
optimal!
You can’t do better. If you do better, then 
your algorithm cannot generate all the 
permutations and is incorrect.
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Counting Sort
Assume that the input is made of integers 
with a small range (k):

0≤a1..n≤k.
When k =O(n), counting-sort runs in Θ(n).

Idea: For every x
count how many elements are ≤x, say t,
put x at position t, the right position.
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Counting Sort

Count_sort(A,B,k):                          // B = output
for i = 0 to k do C[i] = 0                  // initialize
for i = 1 to length(A) do C[A[i]]++   // count xi
for i = 1 to k do C[i] += C[i-1]          // count ≤xi
for i = length(A) downto 1 do

B[C[A[i]]] = A[i]                         // write x at t
C[A[i]]-- // update counter

done

Needs extra memory with k elements: C[0..k] for counting.
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Counting
Sort

Count_sort(A,B,k):
for i = 0 to k do C[i] = 0
for i = 1 to length(A) do C[A[i]]++
for i = 1 to k do C[i] += C[i-1] 
for i = length(A) downto 1 do

B[C[A[i]]] = A[i] 
C[A[i]]--
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one less 3: C[3]--
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one less 0: C[0]--
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at
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one less 3: C[3]--
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Counting Sort
Running time
T(n)=Θ(n+k).
For k=O(n), T(n)=Θ(n).
There is no comparison.
The sort is stable (order kept for ai==aj).
The sort is not in-place.
Problem: Range of numbers translates into 
the size of the working array (counters).

Count_sort(A,B,k):
for i = 0 to k do C[i] = 0
for i = 1 to length(A) do C[A[i]]++
for i = 1 to k do C[i] += C[i-1] 
for i = length(A) downto 1 do

B[C[A[i]]] = A[i] 
C[A[i]]--

done

n

n
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Radix Sort
Sort on the digits of the numbers.

Least significant digits first.
Use a stable sort (like counting sort).

Sort n-digits numbers with each digit 
taking k values (base k), running time is 
T(n)=Θ(d(n+k)).

Radix_sort(A,d):
for i = 1 to d do

stable_sort A with keys=digit i
done
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Radix Sort

329
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720
355
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Bucket Sort
Assume the input is uniformly distributed.
Assume values in [0,1).

Running time:
Expected running time: Θ(n).

Bucket_sort(A):
n = length(A)
for i = 1 to n do insert A[i] into list B[n*A[i]]
for i = 0 to n-1 do insertion_sort list B[i]
concatenate lists B[0],B[1],…B[n-1]
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Bucket Sort
Expected time:

Use E[ni
2]=2-1/n.

See book for technicality.

Idea: n elements distributed uniformly in n
entries ⇒ 1 element per entry in average.
But not O(1) for sorting…
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Bucket Sort
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