Sorting in Linear Time

Alexandre David B2-206

Linear Sort? But...

- Best algorithms so far perform in *O(n* lg*n)*. But they are comparison sorts.
 - We do not inspect the value or use other information.
 - Only comparisons between keys.
- Comparison sorts need at least Ω(n lgn).
 Previous algorithms were optimal!

Optimality

- How to prove that n lgn is the lower bound for all possible comparison sort algorithms?
- Use decision-tree.
 - Binary trees representing comparisons.
 - All possible permutations represented.
 - n! permutations, thus n! leaves.
 - Sorting algorithms find an ordering, i.e., a path.

Decision Tree

The point: Lower bound on the heights of all decision trees = lower bound of running time of any comparison sort algorithm. Because to find one ordering one must go on a path from the root to a leaf.

Optimality

- Conclusion:
 - Any correct algorithm must go through
 Ω(n lgn) to produce any ordering.
 - We have sorting algorithms that have a bound of O(n lgn).
 - These (comparison) sorting algorithm are optimal!
 - You can't do better. If you do better, then your algorithm cannot generate all the permutations and is incorrect.

Counting Sort

- Assume that the input is made of integers with a small range (k):
 - 0≤a_{1..n}≤k.
 - When k = O(n), counting-sort runs in O(n).
- Idea: For every x
 - count how many elements are $\leq x$, say t,
 - put x at position t, the right position.

Counting Sort

Count_sort(A,B,k):// B = outputfor i = 0 to k do
$$C[i] = 0$$
// initializefor i = 1 to length(A) do $C[A[i]]++$ // count x_i for i = 1 to k do $C[i] += C[i-1]$ // count $\leq x_i$ for i = length(A) downto 1 do// write x at t $B[C[A[i]]] = A[i]$ // write x at t $C[A[i]]--$ // update counter

Needs extra memory with k elements: C[0..k] for counting.

7-11-2006

Counting Sort

Running time $T(n) = \Theta(n+k)$. For k = O(n), $T(n) = \Theta(n)$.

Count_sort(A,B,k): for i = 0 to k do C[i] = 0 **for** i = 1 **to n do** *C*[*A*[i]]++ for i = 1 to k do C[i] += C[i-1] for i = n downto 1 do B[C[A[i]]] = A[i]*C*[*A*[i]]-done

- There is no comparison.
- The sort is stable (order kept for $a_i = = a_i$).
- The sort is not in-place.
- Problem: Range of numbers translates into the size of the working array (counters).

Radix Sort

- Sort on the digits of the numbers.
 - Least significant digits first.
 - Use a stable sort (like counting sort).

```
Radix_sort(A,d):
for i = 1 to d do
stable_sort A with keys=digit i
done
```

Sort n-digits numbers with each digit taking k values (base k), running time is T(n)=Θ(d(n+k)).

Bucket Sort

- Assume the input is uniformly distributed.
- Assume values in [0,1).

```
Bucket_sort(A):
n = length(A)
for i = 1 to n do insert A[i] into list B[n*A[i]]
for i = 0 to n-1 do insertion_sort list B[i]
concatenate lists B[0],B[1],...B[n-1]
```

Running time: T(n) = \Omega(n) + \sum_{i=0}^{n-1} O(n_i^2)
 Expected running time: \Omega(n).

Bucket Sort

- Expected time:
 - Use *E[n_i²]=2-1/n*.
 See book for technicality.

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2]) = \Theta(n)$$

• Idea: *n* elements distributed uniformly in *n* entries \Rightarrow 1 element per entry in average. But not O(1) for sorting...

Bucket Sort

