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Linear Sort? But...

= Best algorithms so far perform in &(nlgn).
But they are comparison sorts.

= We do not inspect the value or use other
information.

= Only comparisons between keys.

= Comparison sorts need at least ©2(nlgn).
Previous algorithms were optimal!




Optimality

= How to prove that nlgnis the lower bound
for all possible comparison sort algorithms?

= Use decision-tree.
= Binary trees representing comparisons.
= All possible permutations represented.
= 1/ permutations, thus 7/ leaves.

= Sorting algorithms find an ordering, i.e., a
path.



iDecision Tree
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jDecision Tree

The point: Lower bound on the heights of
all decision trees = lower bound of running
time of any comparison sort algorithm.
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Because to find one
ordering one must go
on a path from the root
to a leaf.

Every sort algorithm
has a different decision
tree = bound all of
them!

Bound on
1,2,3) < @ > 2,1,3) < @ S the height.




iDecision Tree
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Optimality

= Conclusion:
= Any correct algorithm must go through
(nlgn)to produce any ordering.
= We have sorting algorithms that have a bound
of O(nlgn).
= These (comparison) sorting algorithm are
optimal!

= You can't do better. If you do better, then
your algorithm cannot generate all the
permutations and is incorrect.



Counting Sort

= Assume that the input is made of integers
with a small range (k):

» 0<a; <k.

= When k< =0(n), counting-sort runs in @(n).
= Idea: For every X

= count how many elements are <x, say ¢

= put x at position ¢ the right position.



iCounting Sort

Count_sort(A,B k): // B = output
fori=Otokdo C[i]=0 // initialize
for i = 1 to length(A) do C[A[i]]++ // count x,
fori=11to0 kdo C[i] += CJ[i-1] // count ¢x.
for i = length(A) downto 1 do
B[C[A[i]]] = A[i] // write x at 1
C[A[i]]-- // update counter
done

Needs extra memory with k elements: C[0..k] for counting.




Counting

iSort
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Count_sort(A,B k):
fori=0tokdo C[i]=0
for i = 1 to length(A) do C[A[i]]++
fori=11to k do C[i] += C[i-1]
for i = length(A) downto 1 do
B[C[A[i]]] = A[i]
CLA[i]]--

done
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Counting Sort

= Running time
T(n)=06(n+k).

Count_sort(A,B k):
fori=Otokdo C[i]=0
fori=1to n do C[A[i]]++
fori=11to kdo C[i] += C[i-1]
fori = n downto 1 do
B[C[A[i]]] = A[i]
C[A[i]]--

done

For k=0(n), 7(n)=0(n).
= There is no comparison.
= The sort is stable (order kept for a;==a)).
= The sort is not in-place.

= Problem: Range of numbers translates into
the size of the working array (counters).
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Radix Sort

= Sort on the digits of the numbers.
» Least significant digits first.
= Use a stable sort (like counting sort).
Radix_sort(A,d):
fori=1toddo
stable_sort A with keys=digit i
done
= Sort n-digits numbers with each digit
taking k values (base k), running time is
T(n)=06(d(n+k)).
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iRadix Sort
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Bucket Sort

= Assume the input is uniformly distributed.
= Assume values in [0,1).

Bucket_sort(A).

n = length(A)

for i = 1 to n do insert A[i] into list B[n*A[i]]
for i = O to n-1 do insertion_sort list B[i]
concatenate lists B[O],B[1],..B[n-1]

= Running time: T(n)=®(n)+§0(ﬂi2)
= Expected running time: 6(n).
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Bucket Sort

= Expected time:

« Use £/n?]=2-1/n.
See book for technicality.

E[T ()] = O(n) + . O(EIN]) = ©(n)

= Idea: n elements distributed uniformly in n
entries = 1 element per entry in average.
But not O(1) for sorting...
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‘LBucket Sort
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