!'_ Sorting in Linear Time

Alexandre David
B2-206

Linear Sort? But...

= Best algorithms so far perform in &(nlgn).
But they are comparison sorts.

= We do not inspect the value or use other
information.

= Only comparisons between keys.

= Comparison sorts need at least ©2(nlgn).
Previous algorithms were optimal!

Optimality

= How to prove that nlgnis the lower bound
for all possible comparison sort algorithms?

= Use decision-tree.
= Binary trees representing comparisons.
= All possible permutations represented.
= 1/ permutations, thus 7/ leaves.

= Sorting algorithms find an ordering, i.e., a
path.

iDecision Tree

Node element i:j

“The tree represents the comparisons

done by a sorting algorithm.” < >
@ Ali]=A[j] Ali]>A[]
3 2 Comparisons
@ between all
< > < (needed) pairs.

>

jDecision Tree

The point: Lower bound on the heights of
all decision trees = lower bound of running
time of any comparison sort algorithm.

= >
S> S>

Because to find one
ordering one must go
on a path from the root
to a leaf.

Every sort algorithm
has a different decision
tree = bound all of
them!

Bound on
1,2,3) < @ > 2,1,3) < @ S the height.

iDecision Tree

A
i Binary tree
height=h ' l

= >
< @ > < @ >
1,2, @ 2,1, @
|

@3] [ean),

Leaves=permutations —> n/ = leaves — A=Ig(n/)=0Q(nlgn)
(Any correct algorithm must be able to produce

: (3.18)
any permutation)

leaves < 2

Optimality

= Conclusion:
= Any correct algorithm must go through
(nlgn)to produce any ordering.
= We have sorting algorithms that have a bound
of O(nlgn).
= These (comparison) sorting algorithm are
optimal!

= You can't do better. If you do better, then
your algorithm cannot generate all the
permutations and is incorrect.

Counting Sort

= Assume that the input is made of integers
with a small range (k):

» 0<a; <k.

= When k< =0(n), counting-sort runs in @(n).
= Idea: For every X

= count how many elements are <x, say ¢

= put x at position ¢ the right position.

iCounting Sort

Count_sort(A,B k): // B = output
fori=Otokdo C[i]=0 // initialize
for i = 1 to length(A) do C[A[i]]++ // count x,
fori=11to0 kdo C[i] += CJ[i-1] // count ¢x.
for i = length(A) downto 1 do
B[C[A[i]]] = A[i] // write x at 1
C[A[i]]-- // update counter
done

Needs extra memory with k elements: C[0..k] for counting.

Counting

iSort

W | OO

o |~

I = INININIINI[OIO N

NIINIINNIINNINNO || 01N

SR P(PR[PIDN][ON (W W

NI |O|IN|IN|W][Oo|W |O|-~

N(IN|([IN(IN|[IN[Oo||o|h~ [N U

DO |OD||O||HRH|IO|UT WD

HOEE

Count_sort(A,B k):
fori=0tokdo C[i]=0
for i = 1 to length(A) do C[A[i]]++
fori=11to k do C[i] += C[i-1]
for i = length(A) downto 1 do
B[C[A[i]]] = A[i]
CLA[i]]--

done

A[8]

3

A[7’

0

AL6]

3

at

at

at

C[3]

/

7 one less 3: C[3]--

C[O]

2

- one less 0: C[0]--

C[3]

6

» one less 3: C[3]--

1 2 3 45 6 7 8

0 3|3

10

Counting Sort

= Running time
T(n)=06(n+k).

Count_sort(A,B k):
fori=Otokdo C[i]=0
fori=1to n do C[A[i]]++
fori=11to kdo C[i] += C[i-1]
fori = n downto 1 do
B[C[A[i]]] = A[i]
C[A[i]]--

done

For k=0(n), 7(n)=0(n).
= There is no comparison.
= The sort is stable (order kept for a;==a)).
= The sort is not in-place.

= Problem: Range of numbers translates into
the size of the working array (counters).

11

Radix Sort

= Sort on the digits of the numbers.
» Least significant digits first.
= Use a stable sort (like counting sort).
Radix_sort(A,d):
fori=1toddo
stable_sort A with keys=digit i
done
= Sort n-digits numbers with each digit
taking k values (base k), running time is
T(n)=06(d(n+k)).

12

iRadix Sort

329
45[/
65/7
839
436
720
355

720
329

D bh WS
N N OO O

|

329
3955
436
457
657
720
839

13

Bucket Sort

= Assume the input is uniformly distributed.
= Assume values in [0,1).

Bucket_sort(A).

n = length(A)

for i = 1 to n do insert A[i] into list B[n*A[i]]
for i = O to n-1 do insertion_sort list B[i]
concatenate lists B[O],B[1],..B[n-1]

= Running time: T(n)=®(n)+§0(ﬂi2)
= Expected running time: 6(n).

14

Bucket Sort

= Expected time:

« Use £/n?]=2-1/n.
See book for technicality.

E[T ()] = O(n) + . O(EIN]) = ©(n)

= Idea: n elements distributed uniformly in n
entries = 1 element per entry in average.
But not O(1) for sorting...

15

‘LBucket Sort

7-11-2006

.78

217

-39

.26

.72

94

21

212

.23

.68

Hash table O
B: 1

© 00O N O Ol WD

v

212

v

217

v

21

v

.23

.26

v

-39

v

.68

v

.72

.78

94

AA1l

16

