
Sorting in Linear Time

Alexandre David
B2-206

7-11-2006 AA1 2

Linear Sort? But…
Best algorithms so far perform in Θ(n lgn).
But they are comparison sorts.

We do not inspect the value or use other
information.
Only comparisons between keys.

Comparison sorts need at least Ω(n lgn).
Previous algorithms were optimal!

7-11-2006 AA1 3

Optimality
How to prove that n lgn is the lower bound
for all possible comparison sort algorithms?
Use decision-tree.

Binary trees representing comparisons.
All possible permutations represented.
n! permutations, thus n! leaves.
Sorting algorithms find an ordering, i.e., a
path.

7-11-2006 AA1 4

Decision Tree

1:2

2:3 1:3

1:3 2:3〈1,2,3〉

〈1,3,2〉 〈3,1,2〉

〈2,1,3〉

〈3,2,1〉〈2,3,1〉

≤ >

≤

≤

≤

≤

>

>

>

>

Node element i:j
i:j

≤ >

A[i]≤A[j] A[i]>A[j]

Comparisons
between all
(needed) pairs.

“The tree represents the comparisons
done by a sorting algorithm.”

7-11-2006 AA1 5

Decision Tree

1:2

2:3 1:3

1:3 2:3〈1,2,3〉

〈1,3,2〉 〈3,1,2〉

〈2,1,3〉

〈3,2,1〉〈2,3,1〉

≤ >

≤

≤

≤

≤

>

>

>

>

The point: Lower bound on the heights of
all decision trees = lower bound of running
time of any comparison sort algorithm.

Because to find one
ordering one must go
on a path from the root
to a leaf.

Every sort algorithm
has a different decision
tree ⇒ bound all of
them!

Bound on
the height.

7-11-2006 AA1 6

Decision Tree

1:2

2:3 1:3

1:3 2:3〈1,2,3〉

〈1,3,2〉 〈3,1,2〉

〈2,1,3〉

〈3,2,1〉〈2,3,1〉

≤ >

≤

≤

≤

≤

>

>

>

>

Binary tree
height=h

leaves ≤ 2h

Leaves=permutations n! = leaves h≥lg(n!)=Ω(n lgn)
(3.18)(Any correct algorithm must be able to produce

any permutation)

7-11-2006 AA1 7

Optimality
Conclusion:

Any correct algorithm must go through
Ω(n lgn) to produce any ordering.
We have sorting algorithms that have a bound
of O(n lgn).
These (comparison) sorting algorithm are
optimal!
You can’t do better. If you do better, then
your algorithm cannot generate all the
permutations and is incorrect.

7-11-2006 AA1 8

Counting Sort
Assume that the input is made of integers
with a small range (k):

0≤a1..n≤k.
When k =O(n), counting-sort runs in Θ(n).

Idea: For every x
count how many elements are ≤x, say t,
put x at position t, the right position.

7-11-2006 AA1 9

Counting Sort

Count_sort(A,B,k): // B = output
for i = 0 to k do C[i] = 0 // initialize
for i = 1 to length(A) do C[A[i]]++ // count xi
for i = 1 to k do C[i] += C[i-1] // count ≤xi
for i = length(A) downto 1 do

B[C[A[i]]] = A[i] // write x at t
C[A[i]]-- // update counter

done

Needs extra memory with k elements: C[0..k] for counting.

7-11-2006 AA1 10

Counting
Sort

Count_sort(A,B,k):
for i = 0 to k do C[i] = 0
for i = 1 to length(A) do C[A[i]]++
for i = 1 to k do C[i] += C[i-1]
for i = length(A) downto 1 do

B[C[A[i]]] = A[i]
C[A[i]]--

done2 5 3 0 2 3 0 3A:
1 2 3 4 5 6 7 8

0 0 0 0 0 0C:
0 1 2 3 4 5

1

1

2

22 0 2 3 0 1C:

3

32 2 4 7 7 8C:

4

B:
1 2 3 4 5 6 7 8

42 2 4 7 7 8C:

3
A[8]

at
C[3]

7

3

one less 3: C[3]--

2 2 4 6 7 8C:

0
A[7]

at
C[0]

2
one less 0: C[0]--

1 2 4 6 7 8C:

0

3
A[6]

at
C[3]

6
one less 3: C[3]--

31 2 4 5 7 8C:

7-11-2006 AA1 11

Counting Sort
Running time
T(n)=Θ(n+k).
For k=O(n), T(n)=Θ(n).
There is no comparison.
The sort is stable (order kept for ai==aj).
The sort is not in-place.
Problem: Range of numbers translates into
the size of the working array (counters).

Count_sort(A,B,k):
for i = 0 to k do C[i] = 0
for i = 1 to length(A) do C[A[i]]++
for i = 1 to k do C[i] += C[i-1]
for i = length(A) downto 1 do

B[C[A[i]]] = A[i]
C[A[i]]--

done

n

n

7-11-2006 AA1 12

Radix Sort
Sort on the digits of the numbers.

Least significant digits first.
Use a stable sort (like counting sort).

Sort n-digits numbers with each digit
taking k values (base k), running time is
T(n)=Θ(d(n+k)).

Radix_sort(A,d):
for i = 1 to d do

stable_sort A with keys=digit i
done

7-11-2006 AA1 13

Radix Sort

329
457
657
839
436
720
355

720
355
436
457
657
329
839

720
329
436
839
355
457
657

329
355
436
457
657
720
839

7-11-2006 AA1 14

Bucket Sort
Assume the input is uniformly distributed.
Assume values in [0,1).

Running time:
Expected running time: Θ(n).

Bucket_sort(A):
n = length(A)
for i = 1 to n do insert A[i] into list B[n*A[i]]
for i = 0 to n-1 do insertion_sort list B[i]
concatenate lists B[0],B[1],…B[n-1]

∑
−

=

+Θ=
1

0

2)()()(
n

i
inOnnT

7-11-2006 AA1 15

Bucket Sort
Expected time:

Use E[ni
2]=2-1/n.

See book for technicality.

Idea: n elements distributed uniformly in n
entries ⇒ 1 element per entry in average.
But not O(1) for sorting…

)(])[()()]([
1

0

2 nnEOnnTE
n

i
i Θ=+Θ= ∑

−

=

7-11-2006 AA1 16

Bucket Sort
.78

.17

.39

.26

.72

.94

.21

.12

.23

.68

A: Hash table
B:

0

1

2

3

4

5

6

7

8

9

/

/

/

/

.12 .17 /

.21 .23 .26 /

.39 /

.68 /

.72 .78 /

.94 /

