
Data Structures

Alexandre David
B2-206

7-11-06 AA1 2

How to Represent Sets?
Finite dynamic sets, to be more precise.
Operations on these sets:

search,
insert,
delete,
find minimum,
find maximum,
successor,
predecessor…

Efficiently in
function of the
type of use of
the set.

7-11-06 AA1 3

Particular Cases
If only insert, delete, and test
membership, then such a dynamic set is
called a dictionary.
Best way to implement a set depends on
the needed operations.
No perfect set for everything.

7-11-06 AA1 4

Examples of Dynamic Sets
Heaps.
Stacks, queues, linked lists.
Hash tables.
Binary search trees.
Red-black trees (particular balanced binary
search tree).
In general, they use pointers.

7-11-06 AA1 5

Stacks and Queues
Specify which element the delete operation
removes:

stacks = LIFO (last-in, first-out)
queues = FIFO (first-in, first-out)

Insert operation called push or enqueue.
Delete operation called pop or dequeue.
Can be implemented with an array.
Insert and delete in O(1).

7-11-06 AA1 6

Stack Operations

stack_empty(S): // test emptiness
return top(S) == 0 // index of last element

push(S,x):
top(S) = top(S)+1
S[top(S)] = x

pop(S):
if stack_empty(S) then error
else

top(S) = top(S)-1
return S[top(S)+1]

fi

!
Pseudo-code is abstract and does not
address the issue of limited arrays [1..n].

7-11-06 AA1 7

Stack Operations

1 2 3 4 …
S:

top(S)

stack_empty(S): // test emptiness
return top(S) == 0 // index of last element

Empty: 0 element. Not empty: 2 elements.

0 1 2 3 4 …
S:

top(S)

0

7-11-06 AA1 8

Stack Operations

1

1 2 3 4 …
S:

top(S)

0

1 2 3 4 …
S:

top(S)

0

1

push(S,x):
top(S) = top(S)+1
S[top(S)] = x

x
1 2 3 4 …

S:

top(S)

0

2

2

7-11-06 AA1 9

Stack Operations
pop(S):
if stack_empty(S) then error
else

top(S) = top(S)-1
return S[top(S)+1]

fi

1 2 3 4 …
S:

top(S)

0

Error

1
x
2 3 4 …

S:

top(S)

0

1
x
2 3 4 …

S:

top(S)

0

1 2 3 4 …
S:

top(S)

0

1

1

x

2

2

7-11-06 AA1 10

Queue Operations
enqueue(Q,x):
Q[tail(Q)] = x
tail(Q) = tail(Q)+1

dequeue(Q):
x = Q[head(Q)]
head(Q) = head(Q)+1
return x

Limited array:

enqueue(Q,x):
Q[tail(Q)] = x
if tail(Q) == length(Q)
then

tail(Q) = 1
else

tail(Q) = tail(Q)+1
fi

dequeue(Q):
x = Q[head(Q)]
if head(Q) == length(Q)
then

head(Q) = 1
else

head(Q) = head(Q)+1
fi
return x

7-11-06 AA1 11

Queue Operations
Operations are circular, i.e., modulo the size:

enqueue(Q,x):
Q[tail(Q)] = x
tail(Q) = (tail(Q)+1)%length(A) + 1

dequeue(Q):
x = Q[head(Q)]
head(Q) = (head(Q)+1)%length(A) + 1
return x

! Underflow/overflow not detected.

7-11-06 AA1 12

Empty/Full Queues
Choice:

1 2 3 4 5
Q:

head(Q)
tail(Q)

1 2 3 4 5
Q:

tail(Q) head(Q)

Empty

Full

1 2 3 4 5
Q:

head(Q)
tail(Q)

1 2 3 4 5
Q:

tail(Q)
head(Q)

full=false/
size=0

full=true/
size=length(Q)

7-11-06 AA1 13

Empty/Full Queue

1 2 3 4 5
Q:

head(Q)
tail(Q)

1 2 3 4 5
Q:

tail(Q) head(Q)

queue_empty(Q):
return head(Q) == tail(Q)

queue_full(Q):
return

queue_next(Q,head(Q)) ==
tail(Q)

queue_next(Q,i):
return (i+1)%length(Q) + 1

7-11-06 AA1 14

Queue Operations - Revisited

enqueue(Q,x):
if queue_full(Q) then error
Q[tail(Q)] = x
tail(Q) = queue_next(Q,tail(Q))

dequeue(Q):
if queue_empty(Q) then error
x = Q[head(Q)]
head(Q) = queue_next(Q,head)
return x

7-11-06 AA1 15

Stacks/Queues
In practice array [0..n-1], be careful.
View stacks as bounded stacks and queues
as pies.

Stack:
top

bottom

Queue:

head

tail

7-11-06 AA1 16

Linked Lists
Linear structure, order given by pointers.
Singly linked & doubly linked lists.

Singly linked = uni-directional.
Double linked = bi-directional.

Lists = head + tail + elements of the list
(typically called nodes = key + next +
previous).

key next key next key nextprev

key nextprev

key nextprev

7-11-06 AA1 17

Lists - Search

List_search(L,k):
x = head(L)
while x != NIL and key(x) != k do

x = next(x)
done
return x

NIL: special
value, i.e.,
NULL pointer.

O(n) Returns NIL or the element
x of the list s.t. key(x)==k.

7-11-06 AA1 18

Lists - Insert

Make a drawing!

List_insert2(L,x):
next(x) = head(L)
if head(L) != NIL then

prev(head(L)) = x
fi
head(L) = x
prev(x) = NIL

List_insert1(L,x):
next(x) = head(L)
head(L) = x

key next

head

1

1

2

2

Check: 2 updates. O(1)

7-11-06 AA1 19

Lists - Insert

Make a drawing!

List_insert2(L,x):
next(x) = head(L)
if head(L) != NIL then

prev(head(L)) = x
fi
head(L) = x
prev(x) = NIL

key nextprev

head

tail

The tail is not used here.
It can be equal to head,
not a problem.

1
1

2
2

3
3NIL

4

4

Check: 4 updates.

O(1)

7-11-06 AA1 20

Lists – Delete
Singly Linked List

key next

head

Problem: You need to know where
a node is referenced.

List_delete_first(L)
if head(L) == NIL then error
next = next(head(L))
delete(head(L))
head(L) = next

O(1)

7-11-06 AA1 21

List Delete
Doubly Linked List

List_delete(L,x):
if prev(x) != NIL then

next(prev(x)) = next(x)
else

head(L) = next(x)
fi
if next(x) != NIL then

prev(next(x)) = prev(x)
fi

O(1)

key nextprev

head

NIL

key nextprev

7-11-06 AA1 22

Linked Lists with Sentinels
Sentinel=special element to avoid tests.

next(nil)=head(L), prev(nil)=tail(L)
empty list: next(nil)=prev(nil)=nil
nil is the special element, it is not NIL.
Every list has its own nil sentinel.
The list is now circular.

Simplified algorithms.
Good for tight loops.
Bad if many small lists (memory overhead).

7-11-06 AA1 23

List Search with Sentinels

List_search(L,k):
x = next(nil)
while x != nil and key(x) != k do

x = next(x)
done
return x

head(L)
NIL

Not much difference here.

7-11-06 AA1 24

List Delete with Sentinels

List_delete(L,x):
next(prev(x)) = next(x)
prev(next(x)) = prev(x)

key nextprev/ nextprevnil(L):

key nextprev

No if-statement.

7-11-06 AA1 25

List Insertion with Sentinels

List_insert(L,x):
next(x) = next(nil)
prev(next(nil)) = x
next(nil) = x
prev(x) = nil

No if-statement.

key nextprev/ nextprevnil(L):

1
2
3
4

1

2

3
4

7-11-06 AA1 26

Coding with Arrays
If you have no pointer, it is possible to use
arrays and indices:

pointer (memory) ⇔ index (array).

Used for specialized memory management:
one list of used elements,
one list of free elements.

7-11-06 AA1 27

Specialized Memory
Management
Useful if

many elements are allocated/de-allocated very
often,
you want to de-allocate everything and re-
allocate again etc…

free

Allocate/de-allocate:
update free and
next(free).
Commonly referred as
“pool” – see C++
(Stroustrup).Of course, initialize the list

at the beginning!

7-11-06 AA1 28

Rooted Trees
Trees represented by linked data
structures.

Binary trees.
Trees with unbounded/dynamic branching.
Best representation depends on the
application.

Heap: Intrinsic tree, no list.

7-11-06 AA1 29

Binary Trees

/

/ /

/ // // // /

top

left right

/

7-11-06 AA1 30

N-ary Trees

/

/

/ /// /

top

left
child

right
sibling

/

/ / /

/

// /

7-11-06 AA1 31

Doubly Linked Lists in C

typedef struct elem_s {
struct elem_s *prev;
struct elem_s *next;
data_t key;

} elem_t;
typedef struct {

elem_t *head;
} dlist_t;
or
typedef struct {

elem_t nil;
} dlist_t;

void list_delete(dlist_t *l,
elem_t *x)

{
if (x->prev != NULL)

x->prev->next = x->next;
else

l->head = x->next;
if (x->next != NULL)

x->next->prev = x->prev;
}

Special case for the head.

7-11-06 AA1 32

Variant of Doubly Linked Lists

typedef struct elem_s {
struct elem_s **prev;
struct elem_s *next;
data_t key;

} elem_t;

typedef struct {
elem_t *head;

} dlist_t;

void list_delete(elem_t *x)
{

*x->prev = x->next;
if (x->next != NULL)

x->next->prev = x->prev;
}

head

No special case for the head.

