Probabilistic Analysis and Randomized Algorithms

> Alexandre David B2-206

Today

Counting.

Appendix C

- Basic probability.
- Introduction to randomized algorithms.

Chapter 5

Counting

- Rule of sum.
 - Number of ways of choosing from one of two sets. $|A \cup B| = |A| + |B| - |A \cap B|$
- Rule of product.
 - Number of ways of choosing an ordered pairs from two sets.

$$|A \times B| = |A||B|$$

Counting

- Permutations (on ordered sequences):
 - $(A,B,C,D) \neq (B,A,C,D) \neq (C,D,A,B)...$
 - How many possible permutations?
 - Choose 1st element, choose $2^{nd} \dots \Rightarrow$
- k-permutations:
 - Choose k elements among n: Choose 1st, 2nd,

...
$$k^{th}$$
. How many? \Rightarrow

$$\frac{n!}{(n-k)!}$$

Counting

- k-combination k subsets:
 - Set {A,B,C,D,E} (n=5), choose 3 among it (k=3): {A,B,C}, {A,B,D}, {B,C,D}...
 - How many combinations?
 - We count a k-permutation and we keep only one representant for every set of equivalent combination, e.g., {A,B,C}={B,A,C}={C,A,B}...

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Pascal's Triangle

Binomial Expansion

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

 $(x+y)^{0} = 1$ $(x+y)^{1} = x+y$ $(x+y)^{2} = x^{2} + 2xy + y^{2}$ $(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$ $(x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$

Probability

Probability defined in terms of a *sample space*. *Elementary events* = outcomes of an experiment, e.g. head/tail. An *event* is a subset of S: obtaining one tail and one head = {HT,TH}.

S = certain event.
∅ = null event.
Exclusive events=disjoints subsets.
Elementary events are exclusive. 9

Probability distribution Pr{} =mapping from events of S to real numbers s.t.

- $Pr{A} \ge 0$ for any A.
- Pr{S}=1.
- Pr{A\UB}=Pr{A}+Pr{B} for exclusive events.
- Pr{A} is called the probability of the event A.
 - Pr{∅}=0
 - $A \subseteq B \Rightarrow Pr\{A\} \le Pr\{B\}$
 - Pr{<u>A</u>}=1-Pr{A}
 - Pr{A∪B}=Pr{A}+Pr{B}-Pr{A∩B}

Example

Experiment: Toss 2 coins. Elementary events: outcomes. Each elementary event has probability 1/4.

Probability of getting at least one head? Pr{HT,TH,HH}=Pr{HT}+Pr{TH}+Pr{HH} _____=3/4.

 $= Pr{TT} = 1 - Pr{TT}$

Don't panic!

Discrete Probability Distributions

A probability distribution is discrete if it is defined over a countable sample space.

$$\Pr{A} = \sum_{s \in A} \Pr{s}$$
 (s elementary event)

Uniform probability distribution if

 $\Pr{s} = 1/|S|$ (Pick an element at random, fair coin...)

Example

Experiment: Flip a *fair* coin *n* times. Sample space = $\{H,T\}^n$ of size 2^n . Elementary events = sequences of length *n*, of probability $1/2^n$.

Conditional Probability

- We have partial knowledge of the outcome.
 - Flip 2 coins.
 - Tell your friend one is a head.
 - It's not possible that both are tails!
 Pr{TT} knowing there is one H=0.
 - The remaining events are equally equal {HT,TH,HH}.
 - Pr{HH} knowing there is one H=1/3.
 - Pr{HH} not knowing there is one H=1/4.

Previous example: Pr{HH|there is a H}=(1/4)/(3/4).

Independent Events

- Events A_i are pair-wise independent if Pr{A_i∩A_j}=Pr{A_i}Pr{A_j}.
- Events are mutually independent if

$$\Pr\left\{\bigcap_{i\in K}A_i\right\} = \prod_{i\in K}\Pr\{A_i\} \quad \text{for a subset K of indices.}$$

 If A and B are independent, Pr{A|B}=Pr{A}.

Bayes' Theorem

For two events A and B with non-zero probabilities:

$$\Pr\{A \cap B\} = \Pr\{B\} \Pr\{A \mid B\}$$
$$= \Pr\{A\} \Pr\{B \mid A\}$$
$$\downarrow$$
$$\Pr\{A \mid B\} = \frac{\Pr\{A\} \Pr\{B \mid A\}}{\Pr\{B\}}$$

$\Pr\{A \mid B\} = \frac{\Pr\{A\} \Pr\{B \mid A\}}{\Pr\{A\} \Pr\{B \mid A\} + \Pr\{\overline{A}\} \Pr\{B \mid \overline{A}\}}$

Example

We have a fair coin and a biased coin (always head). Experiment: Choose a coin, flip it twice. Suppose it comes up head twice. What is the probability that it is biased?

A=Event that the biased coin is chosen. B=Event that the coin comes up head twice. Pr{A|B}?

 $Pr{A}=1/2, Pr{B|A}=1, Pr{\overline{A}}=1/2, Pr{B|\overline{A}}=1/4$

$$\Pr\{A \mid B\} = \frac{(1/2) \cdot 1}{(1/2) \cdot 1 + (1/2) \cdot (1/4)} = 4/5$$

27-10-2006

Discrete Random Variables

Probability distribution Pr{} =mapping from events of S to real numbers s.t. ... (axioms) to real numbers.

Discrete random variable X= function from *outcomes of S*

 For a random variable X and a real number x (we choose), the event "X=x" is defined as {s∈S : X(s)=x}.

$$\Pr\{X = x\} = \sum_{\{s \in S: X(s) = x\}} \Pr\{s\}$$

(called the probability density function of X)

Example

Experiment: Roll two 6 sided dices. 36 elementary events in the sample space. Uniform probability distribution: $Pr{s}=1/36$. X=maximum of the two values on the dice. $Pr{X=3}?$

Corresponding set of elementary events: (1,3), (2,3), (3,3), (3,2), (3,1). Pr{X=3}=5/36.

Expected Value

Average of the values of a random variable.

$$E[X] = \sum_{x} x \Pr\{X = x\}$$
$$E[X + Y] = E[X] + E[Y]$$

Example

Game: You flip two fair coins. You earn \$3 for heads, but lose \$2 for tails. X=your earning. E[X]? ?

$$\begin{split} \mathsf{E}[\mathsf{X}] = 6*\mathsf{Pr}\{\mathsf{HH}\} + 1*\mathsf{Pr}\{\mathsf{HT}\} + 1*\mathsf{Pr}\{\mathsf{TH}\} - 4*\mathsf{Pr}\{\mathsf{TT}\} \\ = 6(1/4) + 1/4 + 1/4 - 4(1/4) = 1 \end{split}$$

Geometric & Binomial Distributions

- Appendix C.4.
- Interesting read.

Probabilistic Analysis and Randomized Algorithms

- What is it about?
 - Worst case analysis = worst cost or running time of an algorithm.
 - Probabilistic = average in terms of cost or running time.
 - Randomized algorithms = algorithms that have a randomized decision but the result is not random!

Hiring Problem Example

- Hire new office assistant and fire the old (worse) one.
 - Cost of interviewing and hiring $O(nc_i + mc_h)$.
 - Idea: Cheap to interview, expensive to hire.
 - Result is independent of the ordering.

```
best=0
for i = 1 to n do
interview candidate i
if candidate i is better than candidate best then
best=i
hire candidate i
```

Hiring Problem Example

- Worst case = hire everyone (focus on hiring): $O(nc_h)$.
- More interesting: probabilistic analysis.
 - Saying that applicants arrive in a random order is <u>the same as</u> choosing randomly any possible permutation of applicants (n! permutations).
 - Expected cost of hiring?
 - How do we do?

Indicator Variables

- I{A}=1 if A occurs, I{A}=0 if it does not.
- Example: Expected number of heads if we flip one fair coin.
 - S={H,T}
 - X=I{Y=H}
 - E[X]=1*Pr{Y=H}+0*Pr{Y=T}=1/2.
- Lemma: Given an event A in S, let X_A=I{A}. Then E{X_A}=Pr{A}.

Hiring Problem cont.

- X_i=I{hire candidate i}.
- X=Number of hired candidates=X₁+X₂...X_n.
 E[X]=E[X₁]+E[X₂]+...E[X_n]
- E[X_i]=Pr{hire candidate i}=1/i.
- E[X]=sum(1/i) harmonic serie, see A.7 E[X]=lnn+O(1).
- Expected cost = $O(c_h \ln n)$

Randomized Algorithms

- What we did: Knowing the distribution (uniform) of an input, we analyzed an algorithm.
- When we don't know, we can impose a distribution beforehand ⇒ we can analyze such a randomized algorithm for any input.
- The point: Even your worst enemy cannot produce a bad input since the execution time depends on the (randomized) algorithm.
 - Every run is different.
 - The end result is the same.

Permuting Arrays

- A way to randomize inputs
- Permute by sorting
 - Assign random priorities and sort Θ(n lgn).

```
n=length[A]
for i = 1 to n do P[i]=Random(1,n<sup>3</sup>)
sort A using P as keys
```

It is a uniform random permutation, i.e., every output has probability 1/n!.

Permuting Arrays

- Randomize in-place.
 - Swap elements randomly.

n=length[A]
for i = 1 to n do swap(A[i],A[Random(i,n)])

- It is also a uniform random permutation.
- Proof technique: Based on a loop invariant.
 - Initialization.
 - Maintenance.
 - Termination.